在直角三角形中不能求解的是(▲)
A.已知一直角邊和一銳角B.已知斜邊和一銳角
C.已知兩邊D.已知兩角
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
b
sinB
=
c
sinC

這個(gè)三角形不是一個(gè)直角三角形,不能直接使用銳角三角函數(shù)的知識(shí)去處理,所以必須構(gòu)造直角三角形,精英家教網(wǎng)過點(diǎn)A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點(diǎn)A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=
AD
AB
,則AD=csinB
Rt△ACD中,sinC=
AD
AC
,則AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析證明過程中,主要用到了下列三種數(shù)學(xué)思想方法的哪一種( 。
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•浦口區(qū)一模)在直角三角形中,如果已知2個(gè)元素(其中至少有一個(gè)是邊),那么就可以求出其余的3個(gè)未知元素.對(duì)于任意三角形,我們需要知道幾個(gè)元素就可以求出其余的未知元素呢?思考并解答下列問題:
(1)觀察下列4幅圖,根據(jù)圖中已知元素,可以求出其余未知元素的三角形是
②、③
②、③


(2)如圖,在△ABC中,已知∠B=40°,BC=12,AB=10,能否求出AC?如果能,請(qǐng)求出AC的長(zhǎng)度(答案保留根號(hào));如果不能,還需要增加哪個(gè)條件?(參考數(shù)據(jù):sin40°≈0.6,cos40°≈0.8,tan40°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直線AB:y=-2x+4分別交x軸、y軸于A,B兩點(diǎn).點(diǎn)C(-3,0)在x軸上,點(diǎn)Q是x軸正半軸上一動(dòng)點(diǎn),過點(diǎn)Q作直線PQ⊥x軸,交直線AB于點(diǎn)P,連接PC,PO.
(1)設(shè)△COP的面積為S,求S與x的函數(shù)關(guān)系式;
(2)點(diǎn)Q在運(yùn)動(dòng)過程中,△CQP能否構(gòu)成等腰直角三角形?若能求出點(diǎn)P坐標(biāo),若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省江陰市顧山九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA、OC分別在x軸、y軸的正半軸上,OA=4,OC=2.點(diǎn)P從點(diǎn)O出發(fā),沿x軸以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段CP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)90°得點(diǎn)D,點(diǎn)D隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接DP、DA

1)請(qǐng)用含t的代數(shù)式表示出點(diǎn)D的坐標(biāo);

2)求t為何值時(shí),DPA的面積最大,最大為多少?

3)在點(diǎn)POA運(yùn)動(dòng)的過程中,DPA能否成為直角三角形?若能,t的值.

若不能,請(qǐng)說明理由;

4)請(qǐng)直接寫出隨著點(diǎn)P的運(yùn)動(dòng),點(diǎn)D運(yùn)動(dòng)路線的長(zhǎng)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省南京市聯(lián)合體(秦淮下關(guān)浦口沿江)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

在直角三角形中,如果已知2個(gè)元素(其中至少有一個(gè)是邊),那么就可以求出其余的3個(gè)未知元素.對(duì)于任意三角形,我們需要知道幾個(gè)元素就可以求出其余的未知元素呢?思考并解答下列問題:
(1)觀察下列4幅圖,根據(jù)圖中已知元素,可以求出其余未知元素的三角形是______.

(2)如圖,在△ABC中,已知∠B=40°,BC=12,AB=10,能否求出AC?如果能,請(qǐng)求出AC的長(zhǎng)度(答案保留根號(hào));如果不能,還需要增加哪個(gè)條件?(參考數(shù)據(jù):sin40°≈0.6,cos40°≈0.8,tan40°≈0.75)

查看答案和解析>>

同步練習(xí)冊(cè)答案