【題目】操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.
解決問(wèn)題:在圖2中,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),若△BDE的面積為2,則四邊形ADEC的面積為 .
拓展延伸:
(1)如圖3,在△ABC中,點(diǎn)D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關(guān)系為 .
(2)如圖4,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,連接BE、CD交于點(diǎn)O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為 .
【答案】(1)6 (2)S1=2S2 (3)10.5
【解析】試題分析:解決問(wèn)題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;
拓展延伸:(1)作△ABD的中線AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結(jié)論;
(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC的面積=△AOD的面積,△EOC的面積=△BOC的面積的一半, △AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,求出a、b的值,即可得到結(jié)論.
試題解析:解:解決問(wèn)題
連接AE.∵點(diǎn)D、E分別是邊AB、BC的中點(diǎn),∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四邊形ADEC的面積=2+4=6.
拓展延伸:
解:(1)作△ABD的中線AE,則有BE=ED=DC,∴△ABE的面積=△AED的面積=△ADC的面積= S2,∴S1=2S2.
(2)連接AO.∵CO=DO,∴△BOD的面積=△BOC的面積=3,△AOC的面積=△AOD的面積.∵BO=2EO,∴△EOC的面積=△BOC的面積的一半=1.5, △AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四邊形ADOE的面積為=a+b=6+4.5=10.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】慶祝中華人民共和國(guó)成立70周年閱兵式于2019年10月1日在天安門廣場(chǎng)隆重舉行,此次閱兵約9萬(wàn)人參與演練及現(xiàn)場(chǎng)保障工作,將數(shù)據(jù)9萬(wàn)用科學(xué)記數(shù)法表示為( )
A.9×103B.9×104C.9×105D.9×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD=AC,點(diǎn)D、E、F分別在B、AB、AC邊且BE=CF,AD+EC=AB.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】電影票上“4排5號(hào)”,記作(4,5)則(8,7)對(duì)應(yīng)的座位是____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了考查一批日光燈管的使用壽命,從中抽取了100只日光燈管進(jìn)行試驗(yàn),在這個(gè)問(wèn)題中,①總體是指這批日光燈管的全體;②個(gè)體是指每只日光燈管的使用壽命;③樣本是指從中抽取的100只日光燈管的使用壽命;④樣本容量是100只燈管,說(shuō)法正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們已經(jīng)學(xué)習(xí)了一元二次方程的四種解法:因式分解法、直接開(kāi)平方法、配方法和公式法.請(qǐng)選擇合適的方法解下列方程.
(1)x2-3x+1=0;
(2)(x-1)2=3;
(3)x2-3x=0;
(4)x2-2x=4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,每個(gè)小正方形網(wǎng)格的邊長(zhǎng)為單位1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC如圖所示.
(1)請(qǐng)畫出△ABC向右平移4個(gè)單位長(zhǎng)度后的△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);
(2)請(qǐng)計(jì)算△ABC的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,下列各點(diǎn)位于x軸上的是( )
A.(1,﹣2)B.(3,0)C.(﹣1,3)D.(0,﹣4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com