(2001•沈陽)已知:如圖(1),⊙O1與⊙O2相交于A、B兩點(diǎn),經(jīng)過A點(diǎn)的直線分別交⊙O1、⊙O2于C、D兩點(diǎn)(C、D不與B重合).連接BD,過C作BD的平行線交⊙O1于點(diǎn)E,連接BE.
(1)求證:BE是⊙O2的切線;
(2)如圖(2),若兩圓圓心在公共弦AB的同側(cè),其它條件不變,判斷BE和⊙O2的位置關(guān)系;(不要求證明)
(3)若點(diǎn)C為劣弧AB的中點(diǎn),其它條件不變,連接AB、AE,AB與CE交于點(diǎn)F,如圖(3),寫出圖中所有的相似三角形.(不另外連線,不要求證明)
【答案】分析:(1)要證切線,可過B作⊙O2的直徑BH,連接AH,那么證明BH⊥BE即可,根據(jù)圓周角定理,可得出∠H=∠D,而根據(jù)平行線,可得出∠D=∠ACE=∠ABE,因此∠H=∠ABE,然后兩角都加上一個(gè)∠BAH后,可得出∠EBH=90°,由此得證;
(2)證法和(1)完全一樣,只不過最后根據(jù)等角加上一個(gè)公共角,得出∠EBH=90°,換成了等角減去一個(gè)公共角得出∠EBH=90°,因此結(jié)論一樣;
(3)由于C是劣弧AB的中點(diǎn),因此弧AC=弧BC,∠BAC=∠CEA=∠BEC,又由EC∥BD,因此∠ACE=∠D=∠ABE,因此可得出的相似三角形有:△AFC∽△ABD∽△EAC∽△EFB.
解答:(1)證明:過B作⊙O2的直徑BH,連接AH,AB則∠BAH=90°,
∵EC∥BD
∴∠ACE=∠D
∵∠H=∠D,∠ACE=∠ABE
∴∠H=∠ABE
∵∠H+∠ABH=90°
∴∠ABH+∠ABE=90°
∴∠EBH=90°,即EB是⊙O2的切線;

(2)解:直線BE與⊙O2相切;

(3)解:△AFC∽△ABD∽△EAC∽△EFB.
點(diǎn)評:本題主要考查了圓周角定理、切線的判定、相似三角形的判定等知識(shí)點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圓》(05)(解析版) 題型:解答題

(2001•沈陽)已知,如圖,在直角坐標(biāo)系中,以y軸上的點(diǎn)C為圓心,2為半徑的圓與x軸相切于原點(diǎn)O,點(diǎn)P在x軸的負(fù)半軸上,PA切⊙C于點(diǎn)A,AB為⊙C的直徑,PC交OA于點(diǎn)D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點(diǎn)P在x軸的負(fù)半軸上運(yùn)動(dòng),原題的其他條件不變,設(shè)點(diǎn)P的坐標(biāo)為(x,0),四邊形POCA的面積為S,求S與點(diǎn)P的橫坐標(biāo)x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)當(dāng)點(diǎn)P在x軸的負(fù)半軸上運(yùn)動(dòng)時(shí),原題的其他條件不變,分析并判斷是否存在這樣的一點(diǎn)P,使S四邊形POCA=S△AOB?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:解答題

(2001•沈陽)已知,如圖,在直角坐標(biāo)系中,以y軸上的點(diǎn)C為圓心,2為半徑的圓與x軸相切于原點(diǎn)O,點(diǎn)P在x軸的負(fù)半軸上,PA切⊙C于點(diǎn)A,AB為⊙C的直徑,PC交OA于點(diǎn)D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點(diǎn)P在x軸的負(fù)半軸上運(yùn)動(dòng),原題的其他條件不變,設(shè)點(diǎn)P的坐標(biāo)為(x,0),四邊形POCA的面積為S,求S與點(diǎn)P的橫坐標(biāo)x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)當(dāng)點(diǎn)P在x軸的負(fù)半軸上運(yùn)動(dòng)時(shí),原題的其他條件不變,分析并判斷是否存在這樣的一點(diǎn)P,使S四邊形POCA=S△AOB?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2001•沈陽)已知,如圖,在直角坐標(biāo)系中,以y軸上的點(diǎn)C為圓心,2為半徑的圓與x軸相切于原點(diǎn)O,點(diǎn)P在x軸的負(fù)半軸上,PA切⊙C于點(diǎn)A,AB為⊙C的直徑,PC交OA于點(diǎn)D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點(diǎn)P在x軸的負(fù)半軸上運(yùn)動(dòng),原題的其他條件不變,設(shè)點(diǎn)P的坐標(biāo)為(x,0),四邊形POCA的面積為S,求S與點(diǎn)P的橫坐標(biāo)x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)當(dāng)點(diǎn)P在x軸的負(fù)半軸上運(yùn)動(dòng)時(shí),原題的其他條件不變,分析并判斷是否存在這樣的一點(diǎn)P,使S四邊形POCA=S△AOB?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年遼寧省沈陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•沈陽)已知,如圖,在直角坐標(biāo)系中,以y軸上的點(diǎn)C為圓心,2為半徑的圓與x軸相切于原點(diǎn)O,點(diǎn)P在x軸的負(fù)半軸上,PA切⊙C于點(diǎn)A,AB為⊙C的直徑,PC交OA于點(diǎn)D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點(diǎn)P在x軸的負(fù)半軸上運(yùn)動(dòng),原題的其他條件不變,設(shè)點(diǎn)P的坐標(biāo)為(x,0),四邊形POCA的面積為S,求S與點(diǎn)P的橫坐標(biāo)x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)當(dāng)點(diǎn)P在x軸的負(fù)半軸上運(yùn)動(dòng)時(shí),原題的其他條件不變,分析并判斷是否存在這樣的一點(diǎn)P,使S四邊形POCA=S△AOB?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年遼寧省沈陽市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2001•沈陽)已知變量y和x成反比例,當(dāng)x=3時(shí),y=-6,那么當(dāng)y=3時(shí),x的值是( )
A.6
B.-6
C.9
D.-9

查看答案和解析>>

同步練習(xí)冊答案