18、把下列各式分解因式:
(1)x4-7x2+1;
(2)x4+x2+2ax+1-a2
(3)(1+y)2-2x2(1-y2)+x4(1-y)2
(4)x4+2x3+3x2+2x+1
分析:(1)首先把-7x2變?yōu)?2x2-9x2,然后多項(xiàng)式變?yōu)閤4-2x2+1-9x2,接著利用完全平方公式和平方差公式分解因式即可求解;
(2)首先把多項(xiàng)式變?yōu)閤4+2x2+1-x2+2ax-a2,然后利用公式法分解因式即可求解;
(3)首先把-2x2(1-y2)變?yōu)?2x2(1-y)(1-y),然后利用完全平方公式分解因式即可求解;
(4)首先把多項(xiàng)式變?yōu)閤4+x3+x2++x3+x2+x+x2+x+1,然后三個(gè)一組提取公因式,接著提取公因式即可求解.
解答:解:(1)x4-7x2+1
=x4+2x2+1-9x2
=(x2+1)2-(3x)2
=(x2+3x+1)(x2-3x+1);

(2)x4+x2+2ax+1-a2
=x4+2x2+1-x2+2ax-a2
=(x2+1)-(x-a)2
=(x2+1+x-a)(x2+1-x+a);

(3)(1+y)2-2x2(1-y2)+x4(1-y)2
=(1+y)2-2x2(1-y)(1+y)+x4(1-y)2
=(1+y)2-2x2(1-y)(1+y)+[x2(1-y)]2
=[(1+y)-x2(1-y)]2
=(1+y-x2+x2y)2

(4)x4+2x3+3x2+2x+1
=x4+x3+x2++x3+x2+x+x2+x+1
=x2(x2+x+1)+x(x2+x+1)+x2+x+1
=(x2+x+1)2
點(diǎn)評(píng):此題主要考查了利用分組分解法分解因式,解題關(guān)鍵是根據(jù)所給多項(xiàng)式,有兩項(xiàng)的平方和,或有兩項(xiàng)的積的2倍,只需配上缺項(xiàng),就能用配方法恰當(dāng)分解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、把下列各式分解因式:
(1)a4+64b4;
(2)x4+x2y2+y4
(3)x2+(1+x)2+(x+x22
(4)(c-a)2-4(b-c)(a-b);
(5)x3-9x+8;
(6)x3+2x2-5x-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把下列各式分解因式:
(1)x3-x;              
(2)a3-2a2b+ab2;    
(3)3a2b-6ab2
(4)-6a3+15ab2-9ac2;
(5)a(x-y)-x+y;    
(6)x2+4y2-4xy;
(7)x2(a-b)+4(b-a);     
(8)(x2+4)2-16x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把下列各式分解因式.
(1)a3-a
(2)3x4-12x2
(3)9(x-y)2-4(x+y)2
(4)a2-49b2
(5)16x2y2z2-9
(6)x2y2-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把下列各式分解因式.
(1)a2-1=
(a+1)(a-1)
(a+1)(a-1)

(2)a4-1=
(a2+1)(a+1)(a-1)
(a2+1)(a+1)(a-1)

(3)x2-2xy+y2=
(x-y)2
(x-y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把下列各式分解因式:
(1)x6-81x2y4         
(2)2x2-x-3        
(3)x2-7x-8  (4)a3-2a2+a     
(5)a2+6a+5     (6)7x2+13x-2
(7)-x2+4x+5       (8)-3x2+10x+8    
(9)x3z-4x2yz+4xy2z (10)x3z-4x2yz+4xy2z              
(11)x4+6x2+9  (12)(x-1)2-4(x-1)y+4y2           
(13)(x2-10)(x2+5)+54 (14)(a-b)(x-y)-(b-a)(x+y)       
(15)4m5+8m3n2+4mn4 (16)4a2+4ab+b2-1            
(17)x3-x2-2x+2.

查看答案和解析>>

同步練習(xí)冊(cè)答案