(2004•連云港)若⊙O1的圓心坐標(biāo)為(2,0),半徑為1;⊙O2的圓心坐標(biāo)為(-1,0),半徑為3,則這兩圓的位置關(guān)系是( )
A.相交
B.相切
C.相離
D.內(nèi)含
【答案】分析:只需找到兩圓的圓心距、兩圓的半徑之和、兩圓的半徑之差,再根據(jù)它們之間的數(shù)量關(guān)系進(jìn)一步判斷兩圓的位置關(guān)系.
設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離,則d>R+r;外切,則d=R+r,相交,則R-r<d<R+r,內(nèi)切,則d=R-r;內(nèi)含,則d<R-r.
解答:解:根據(jù)題意,得:
∵兩圓的圓心距為2-(-1)=3,兩圓的半徑之和為1+3=4,兩圓的半徑之差是3-1=2,
∴2<3<4
∴兩圓相交.
故選A.
點(diǎn)評:考查了兩圓的位置關(guān)系與數(shù)量之間的聯(lián)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2004•連云港)有一個運(yùn)算裝置,當(dāng)輸入值為x時,其輸出值為y,且y是x的二次函數(shù),已知輸入值為-2,0,1時,相應(yīng)的輸出值分別為5,-3,-4.
(1)求此二次函數(shù)的解析式;
(2)在所給的坐標(biāo)系中畫出這個二次函數(shù)的圖象,并根據(jù)圖象寫出當(dāng)輸出值y為正數(shù)時輸入值x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2004•連云港)如圖,直線y=kx+4與函數(shù)y=(x>0,m>0)的圖象交于A、B兩點(diǎn),且與x、y軸分別交于C、D兩點(diǎn).
(1)若△COD的面積是△AOB的面積的倍,求k與m之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,是否存在k和m,使得以AB為直徑的圓經(jīng)過點(diǎn)P(2,0)?若存在,求出k和m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省連云港市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•連云港)如圖,直線y=kx+4與函數(shù)y=(x>0,m>0)的圖象交于A、B兩點(diǎn),且與x、y軸分別交于C、D兩點(diǎn).
(1)若△COD的面積是△AOB的面積的倍,求k與m之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,是否存在k和m,使得以AB為直徑的圓經(jīng)過點(diǎn)P(2,0)?若存在,求出k和m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省連云港市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•連云港)有一個運(yùn)算裝置,當(dāng)輸入值為x時,其輸出值為y,且y是x的二次函數(shù),已知輸入值為-2,0,1時,相應(yīng)的輸出值分別為5,-3,-4.
(1)求此二次函數(shù)的解析式;
(2)在所給的坐標(biāo)系中畫出這個二次函數(shù)的圖象,并根據(jù)圖象寫出當(dāng)輸出值y為正數(shù)時輸入值x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《代數(shù)式》(01)(解析版) 題型:選擇題

(2004•連云港)某種商品進(jìn)價為a元,商店將價格提高30%作零售價銷售.在銷售旺季過后,商店又以8折(即售價的80%)的價格開展促銷活動.這時一件該商品的售價為( )
A.a(chǎn)元
B.0.8a元
C.1.04a元
D.0.92a元

查看答案和解析>>

同步練習(xí)冊答案