如圖AB是⊙O的直徑,從⊙O外一點(diǎn)C引⊙O切線CD,D是切點(diǎn),再從C點(diǎn)引割線交⊙O于E、F交BD于G,EF⊥AB于H,已知AB=4,OH=HB,CE=
1
2
EF,則CG=______.
連接AD、OE,如圖,
∵AB是⊙O的直徑,CD是⊙O切線,
∴∠CDG=∠A,∠A+∠B=∠B+∠HGB=90°,又∠HGB=∠CGD,
∴∠CDG=∠CGD,即CD=CG;
∵AB=4,EF⊥AB,OH=HB,
∴在直角△OEH中,OH=1,OE=2,
∴EH=HF=
3
,又CE=
1
2
EF,
∴CE=
3
,CF=3
3

又由CD2=CE×CF,
∴CG2=
3
×3
3
,
解得,CG=3.
故答案為3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以坐標(biāo)原點(diǎn)O為圓心,6為半徑的圓交y軸于A、B兩點(diǎn).AM、BN為⊙O的切線.D是切線AM上一點(diǎn)(D與A不重合),DE切⊙O于點(diǎn)E,與BN交于點(diǎn)C,且AD<BC.設(shè)AD=m,BC=n.
(1)求m•n的值;
(2)若m、n是方程2t2-30t+k=0的兩根.求:
①△COD的面積;
②CD所在直線的解析式;
③切點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O與CA、CB相切于點(diǎn)A、B,OA=OB=2
3
cm,AB=6cm,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA為⊙O的切線,A為切點(diǎn),直線PO交⊙O于點(diǎn)E,F(xiàn),過點(diǎn)A作PO的垂線BA,垂足為點(diǎn)O,交⊙O于點(diǎn)B,延長AO與⊙O交于點(diǎn)C,連接BC.
(1)求證:直線PB為⊙O的切線;
(2)若AB=FD,且BC=6,求出PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA是⊙O的切線,切點(diǎn)為A,PA=2
3
,∠APO=30°,則⊙O的半徑長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA、PB是⊙O的切線,切點(diǎn)分別是A、B,點(diǎn)C是⊙O上異與點(diǎn)A、B的點(diǎn),如果∠P=60°,那么∠ACB等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙O的直徑AB的長為4cm,C是⊙O上一點(diǎn),∠BAC=30°,過點(diǎn)C作⊙O的切線交AB的延長線于點(diǎn)P,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

定義:定點(diǎn)A與⊙O上任意一點(diǎn)之間的距離的最小值稱為點(diǎn)A與⊙O之間的距離.現(xiàn)有一矩形ABCD(如圖),AB=14cm,BC=12cm,⊙K與矩形的邊AB,BC,CD分別切于點(diǎn)E,F(xiàn),G,則點(diǎn)A與⊙K的距離為( 。
A.4cmB.8cmC.10cmD.12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,AC為弦,且平分∠BAD,AD⊥CD,垂足為D.
(1)求證:CD是⊙O切線;
(2)若⊙O的直徑為4,AD=3,求∠BAC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案