【題目】有一筆直的公路連接M,N兩地,甲車從M地駛往N地,速度為60km/h,乙車從M地駛往N地,速度為40km/h,丙車從N地駛往M地,速度為80km/h,三輛車同時出發(fā),先到目的地的車停止不動.途中甲車發(fā)生故障,于是停車修理了2.5h,修好后立即按原速駛往N地.設(shè)甲車行駛的時間為t(h),甲、丙兩車之間的距離為S1(km).甲、乙兩車離M地的距離為S2(km),S1與t之間的關(guān)系如圖1所示,S2與t之間的關(guān)系如圖2所示.根據(jù)題中的信息回答下列問題:
(1)①圖1中點C的實際意義是 ;
②點B的橫坐標(biāo)是 ;點E的橫坐標(biāo)是 ;點Q的坐標(biāo)是 ;
(2)請求出圖2中線段QR所表示的S2與t之間的關(guān)系式;
(3)當(dāng)甲、乙兩車距70km時,請直接寫出t的值.
【答案】(1)①經(jīng)過3小時,甲乙兩車相遇;②1;3.75;(3.5,60);(2)y=60x﹣150;(3)或4小時
【解析】
(1)①根據(jù)題意可知點C的實際意義是經(jīng)過3小時,甲乙兩車相遇;②先求出相遇時,甲行駛的時間,可求點B坐標(biāo),即可求點D,點Q坐標(biāo),由圖象可求點E坐標(biāo),即可求解;
(2)用待定系數(shù)法可求解析式;
(3)由甲、乙兩車距70km,分兩種情況列出方程可求解.
解:(1)①∵點C的坐標(biāo)(3,0),
∴點CC的實際意義是經(jīng)過3小時,甲乙兩車相遇;
故答案為:經(jīng)過3小時,甲乙兩車相遇;
②設(shè)甲行駛x小時后,甲車發(fā)生故障,
由題意可得60x+80×3=300
∴x=1,
∴點B的橫坐標(biāo)為1,
∴點D的橫坐標(biāo)為3.5,
∴點Q坐標(biāo)為(3.5,60)
由圖象可知,點E表示丙車到達N地,
∴t==3.75h,
∴點E的橫坐標(biāo)為3.75,
故答案為:1,3.75,(3.5,60)
(2)設(shè)線段QR的函數(shù)表達式為:y=kx+b,
解得:
∴線段QR的函數(shù)表達式為:y=60x﹣150;
(3)設(shè)經(jīng)過x小時,甲、乙兩車距70km,
由題意可得:40x﹣60=70或40x﹣60(x﹣2.5)=70
∴x=或4,
答經(jīng)過或4小時,甲、乙兩車距70km.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:四邊形ABCD中,對角線BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圖1和圖2中的四邊形ABCD都是正方形,△ABE的邊長分別為a,b,c,請你從圖1到圖2,圖2到圖3的變換過程中,利用幾何圖形的面積關(guān)系,求a,b,c之間的等量關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,在△ABC外側(cè)作直線CP,點A關(guān)于直線CP的對稱點為D,連接AD,BD,其中BD交直線CP于點E.
(1)如圖1,∠ACP=15°.
①依題意補全圖形;
②求∠CBD的度數(shù);
(2)如圖2,若45°<∠ACP<90°,直接用等式表示線段AC,DE,BE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當(dāng)△CEB′為直角三角形時,BE的長為( )
A. 3 B. C. 2或3 D. 3或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點坐標(biāo)為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數(shù)y=ax2+bx+c的表達式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當(dāng)點P在何位置時,四邊形APCD的面積最大?并求出最大面積;
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,線段AM為BC邊上的中線.動點D在直線AM上時,以CD為一邊在CD的下方作等邊△CDE,連結(jié)BE.
(1)求∠CAM的度數(shù);
(2)若點D在線段AM上時,求證:△ADC≌△BEC;
(3)當(dāng)動D在直線AM上時,設(shè)直線BE與直線AM的交點為O,試判斷∠AOB是否為定值?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某藥廠銷售部門根據(jù)市場調(diào)研結(jié)果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進行預(yù)測,井建立如下模型:設(shè)第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關(guān)系:Q=
(1)當(dāng)8<t≤24時,求P關(guān)于t的函數(shù)解析式;
(2)設(shè)第t個月銷售該原料藥的月毛利潤為w(單位:萬元)
①求w關(guān)于t的函數(shù)解析式;
②該藥廠銷售部門分析認(rèn)為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對應(yīng)的月銷售量P的最小值和最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅游景點的年游客量y(萬人)是門票價格x(元)的一次函數(shù),其函數(shù)圖像如下圖.
(1)求y關(guān)于x的函數(shù)解析式;
(2)經(jīng)過景點工作人員統(tǒng)計發(fā)現(xiàn):每賣出一張門票所需成本為20元.那么要想獲得年利潤11500萬元,且門票價格不得高于230元,該年的門票價格應(yīng)該定為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com