【題目】一個銳角的余角加上90°,就等于( )
A.這個銳角的余角
B.這個銳角的補(bǔ)角
C.這個銳角的2倍
D.這個銳角的3倍

【答案】B
【解析】設(shè)這個銳角為∠α , 那么根據(jù)題意有90°-∠α+90°=180°-∠α , 即為∠α的補(bǔ)角.
根據(jù)余角與補(bǔ)角的定義列式即可解此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把命題角平分線上的點到這個角兩邊的距離相等改寫成如果,那么…、”的形式:如果_____,那么_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:(1)如圖①,AB為⊙O的弦,點C是⊙O上的一點,在直線AB上方找一個點D,使得∠ADB=∠ACB,畫出∠ADB;

(2)如圖②,AB 是⊙O的弦,點C是⊙O上的一個點,在過點C的直線l上找一點P,使得∠APB<∠ACB,畫出∠APB;

(3)如圖③,已知足球門寬AB約為米,一球員從距B點米的C點(點A、B、C均在球場的底線上),沿與AC成45°的CD方向帶球.試問,該球員能否在射線CD上找一點P,使得點P最佳射門點(即∠APB最大)?若能找到,求出這時點P與點C的距離;若找不到,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】O為直線AB上一點,在直線AB上側(cè)任作一個∠COD,使得∠COD=90°

1)如圖1,過點O作射線OE,當(dāng)OE恰好為∠AOD的角平分線時,請直接寫出∠BOD與∠COE之間的倍數(shù)關(guān)系,即∠BOD= ______ COE(填一個數(shù)字);

2)如圖2,過點O作射線OE,當(dāng)OC恰好為∠AOE的角平分線時,另作射線OF,使得OF平分∠COD,求∠FOB+EOC的度數(shù);

3)在(2)的條件下,若∠EOC=3EOF,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級一班在召開期末總結(jié)表彰會前,班主任安排班長李小波去商店買獎品,下面是李小波與售貨員的對話:

李小波:阿姨,您好!

售貨員:同學(xué),你好,想買點什么?

李小波:我只有100元,請幫我安排買10支鋼筆和15本筆記本.

售貨員:好,每支鋼筆比每本筆記本貴2元,退你5元,請清點好,再見.

根據(jù)這段對話,你能算出鋼筆和筆記本的單價各是多少嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在平面直角坐標(biāo)系中,直線l與y軸相交于點A(0,m)其中m<0,與x軸相交于點B(4,0).拋物線y=ax2+bx(a>0)的頂點為F,它與直線l相交于點C,其對稱軸分別與直線l和x軸相交于點D和點E.

(1)設(shè)a=,m=﹣2時,

①求出點C、點D的坐標(biāo);

②拋物線y=ax2+bx上是否存在點G,使得以G、C、D、F四點為頂點的四邊形為平行四邊形?如果存在,求出點G的坐標(biāo);如果不存在,請說明理由.

(2)當(dāng)以F、C、D為頂點的三角形與△BED相似且滿足三角形FAC的面積與三角形FBC面積之比為1:3時,求拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個角的余角比它本身小,這個角是( )
A.大于45°
B.小于45°
C.大于0°小于45°
D.大于45°小于90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,BC=7,點E是AD上一個動點,把BAE沿BE向矩形內(nèi)部折疊,當(dāng)點A的對應(yīng)點A1恰好落在BCD 的平分線上時,CA1的長為( )

A、3或4 B、4或3 C、3或4 D、3或4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD,A=60°,則∠B的度數(shù)為(

A. 30° B. 45° C. 60° D. 120°

查看答案和解析>>

同步練習(xí)冊答案