已知方程,用含y的代數(shù)式表示x,那么x=       

 

10y+40

解析:本題考查的是二元一次方程的變形。步驟移項(xiàng),系數(shù)化為1的過程。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).
(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);
(2)“若AB的長為2
2
,求拋物線的解析式.”解法的部分步驟如下,補(bǔ)全解題過程,并簡述步驟①的解題依據(jù),步驟②的解題方法;
解:由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(
 
,0)
∵拋物線的對(duì)稱性及AB=2
2

∴AD=DB=|xA-xD|=2
2

∵點(diǎn)A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h(yuǎn)=xC=xD,將|xA-xD|=
2
代入上式,得到關(guān)于m的方程0=(
2
)2+(      )

(3)將(2)中的條件“AB的長為2
2
”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).
(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);
(2)“若AB的長為數(shù)學(xué)公式,求拋物線的解析式.”解法的部分步驟如下,補(bǔ)全解題過程,并簡述步驟①的解題依據(jù),步驟②的解題方法;
解:由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(,0)
∵拋物線的對(duì)稱性及數(shù)學(xué)公式
∴AD=DB=數(shù)學(xué)公式
∵點(diǎn)A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h(yuǎn)=xC=xD,將數(shù)學(xué)公式代入上式,得到關(guān)于m的方程數(shù)學(xué)公式
(3)將(2)中的條件“AB的長為數(shù)學(xué)公式”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:海淀區(qū) 題型:解答題

已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).
(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);
(2)“若AB的長為2
2
,求拋物線的解析式.”解法的部分步驟如下,補(bǔ)全解題過程,并簡述步驟①的解題依據(jù),步驟②的解題方法;
由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(______,0)
∵拋物線的對(duì)稱性及AB=2
2
,
∴AD=DB=|xA-xD|=2
2

∵點(diǎn)A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h(yuǎn)=xC=xD,將|xA-xD|=
2
代入上式,得到關(guān)于m的方程0=(
2
)2+(      )

(3)將(2)中的條件“AB的長為2
2
”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2000•海淀區(qū))已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).
(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);
(2)“若AB的長為,求拋物線的解析式.”解法的部分步驟如下,補(bǔ)全解題過程,并簡述步驟①的解題依據(jù),步驟②的解題方法;
解:由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(______,0)
∵拋物線的對(duì)稱性及,
∴AD=DB=
∵點(diǎn)A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h(yuǎn)=xC=xD,將代入上式,得到關(guān)于m的方程
(3)將(2)中的條件“AB的長為”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年北京市海淀區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•海淀區(qū))已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).
(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);
(2)“若AB的長為,求拋物線的解析式.”解法的部分步驟如下,補(bǔ)全解題過程,并簡述步驟①的解題依據(jù),步驟②的解題方法;
解:由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(______,0)
∵拋物線的對(duì)稱性及,
∴AD=DB=
∵點(diǎn)A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h(yuǎn)=xC=xD,將代入上式,得到關(guān)于m的方程
(3)將(2)中的條件“AB的長為”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案