【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),點(diǎn)B(1,3).
(1)畫出將△OAB繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°后所得的△OA1B1,并寫出點(diǎn)A1,B1的坐標(biāo);
(2)畫出△OAB關(guān)于原點(diǎn)O的中心對稱圖形△OA2B2,并寫出點(diǎn)A2,B2的坐標(biāo).
【答案】(1)畫圖見解析;A1(0,﹣2),B1(3,﹣1);(2)畫圖見解析;A2(﹣2,0),B2(﹣1,﹣3).
【解析】
(1)根據(jù)題意所述的旋轉(zhuǎn)三要素找到各點(diǎn)的對應(yīng)點(diǎn),順次連接可得出旋轉(zhuǎn)后的圖形,再由順時(shí)針旋轉(zhuǎn)90°后點(diǎn)的橫坐標(biāo)等于旋轉(zhuǎn)前點(diǎn)的縱坐標(biāo),縱坐標(biāo)等于旋轉(zhuǎn)前點(diǎn)的橫坐標(biāo)的相反數(shù),即可得出A′、B′的坐標(biāo);(2)根據(jù)題意找到各點(diǎn)的對應(yīng)點(diǎn),順次連接可得出旋轉(zhuǎn)后的圖形,再由順時(shí)針旋轉(zhuǎn)后點(diǎn)的橫坐標(biāo)等于旋轉(zhuǎn)前點(diǎn)的橫坐標(biāo)的相反數(shù),縱坐標(biāo)等于旋轉(zhuǎn)前點(diǎn)的縱坐標(biāo)的相反數(shù),即可得A2、B2的坐標(biāo).
(1)如圖,△OA1B1即為所求,A1(0,﹣2),B1(3,﹣1);
(2)如圖,△OA2B2即為所求,A2(﹣2,0),B2(﹣1,﹣3);
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣ x+m(m>0)的圖象與x軸、y軸分別交于點(diǎn)A,B,點(diǎn)C在線段OA上,點(diǎn)C的橫坐標(biāo)為n,點(diǎn)D在線段AB上,且AD=2BD,將△ACD繞點(diǎn)D旋轉(zhuǎn)180°后得到△A1C1D.
(1)若點(diǎn)C1恰好落在y軸上,試求 的值;
(2)當(dāng)n=4時(shí),若△A1C1D被y軸分得兩部分圖形的面積比為3:5,求該一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) yl= x ( x ≥0 ) , ( x > 0 )的圖象如圖所示,則結(jié)論: ① 兩函數(shù)圖象的交點(diǎn)A的坐標(biāo)為(3 ,3 ) ② 當(dāng) x > 3 時(shí), ③ 當(dāng) x =1時(shí), BC = 8
④ 當(dāng) x 逐漸增大時(shí), yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結(jié)論的序號(hào)是_ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你知道什么是“低碳生活”嗎?“低碳生活”是指人們生活中盡量減少所耗能量,從而降低碳(特別是二氧化碳)的排放量的一種生活方式.
(1)如果用x(L)表示耗油量,用y(kg)表示開私家車的二氧化碳排放量,則y與x之間的關(guān)系式可表示為___________;
(2)在上述關(guān)系式中,耗油量每增加1L,二氧化碳排放量增加________kg.當(dāng)耗油量從10L增加到100L時(shí),二氧化碳排放量從________kg增加到________kg;
(3)小穎家本月家居用電的耗電量約為90kwh、開私家車的耗油量約為70L、天然氣使用量約20m、自來水使用量約6噸,請你計(jì)算一下小穎家本月這幾項(xiàng)的二氧化碳排放總量;
(4)你打算從哪些小事做起踐行低碳生活?請直接寫出兩條.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分如圖,在ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),分別連接BE、DF、BD.
(1)求證:△AEB≌△CFD;
(2)若四邊形EBFD是菱形,求∠ABD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是邊長為1的正方形ABCD的邊AB上任意一點(diǎn)(不含A,B),過B,C,E三點(diǎn)的圓與BD相交于點(diǎn)F,與CD相交于點(diǎn)G,與∠ABC的外角平分線相交于點(diǎn)H.
(1)求證:四邊形EFCH是正方形;
(2)設(shè)BE=x,△CFG的面積為y,求y與x的函數(shù)關(guān)系式,并求y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,線段AB在x軸上點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,連接AC,BD,CD.得平行四邊形ABDC
(1)補(bǔ)全圖形,直接寫出點(diǎn)C,D的坐標(biāo);
(2)若在y軸上存在點(diǎn)M,連接MA,MB,使S△MAB=S四邊形ABDC,求出點(diǎn)M的坐標(biāo).
(3)若點(diǎn)P在直線BD上運(yùn)動(dòng),連接PC,PO.請畫出圖形,探索∠CPO、∠DCP、∠BOP的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是∠BAC的平分線,∠B=44°,∠DAE=15°,求∠C的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com