已知正四邊形ABCD的對(duì)角線的長(zhǎng)是
2
,則它的面積是
 
分析:由于正方形的對(duì)角線的長(zhǎng)是邊長(zhǎng)的
2
倍,故邊長(zhǎng)為1,面積為1.
解答:解:∵對(duì)角線的長(zhǎng)長(zhǎng)是
2

∴正方形的邊長(zhǎng)是1,
∴正方形的面積=12=1.
故本題答案為:1.
點(diǎn)評(píng):本題利用了正方形的性質(zhì)求解,是基礎(chǔ)知識(shí)要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后解答問題.
經(jīng)過正四邊形(即正方形)各頂點(diǎn)的圓叫作這個(gè)正四邊形的外接圓,圓心是正四邊形的對(duì)稱中心,這個(gè)正四邊形叫作這個(gè)圓的內(nèi)接正四邊形.
如圖,已知正四邊形ABCD的外接圓⊙O,⊙O的面積為S1,正四邊形ABCD的面積為S2,以圓心O為頂點(diǎn)作∠MON,使∠MON=90°,將∠MON繞點(diǎn)O旋轉(zhuǎn),OM、ON分別與⊙O相交于點(diǎn)E、F,分別與正四邊形ABCD的邊相交于點(diǎn)G、H.設(shè)由OE、OF、
EF
及正四邊形ABCD的邊圍成的圖形(圖中的陰影部分)的面積為S.①精英家教網(wǎng)
(1)當(dāng)OM經(jīng)過點(diǎn)A時(shí)(如圖①),則S、S1、S2之間的關(guān)系為:S=
 
(用含S1、S2的代數(shù)式表示);
(2)當(dāng)OM⊥AB時(shí)(如圖②),點(diǎn)G為垂足,則(1)中的結(jié)論仍然成立嗎?請(qǐng)說明理由;
(3)當(dāng)∠MON旋轉(zhuǎn)到任意位置時(shí)(如圖③),則(1)中的結(jié)論仍然成立嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(74):3.7 弧長(zhǎng)及扇形的面積(解析版) 題型:解答題

閱讀下列材料,然后解答問題.
經(jīng)過正四邊形(即正方形)各頂點(diǎn)的圓叫作這個(gè)正四邊形的外接圓,圓心是正四邊形的對(duì)稱中心,這個(gè)正四邊形叫作這個(gè)圓的內(nèi)接正四邊形.
如圖,已知正四邊形ABCD的外接圓⊙O,⊙O的面積為S1,正四邊形ABCD的面積為S2,以圓心O為頂點(diǎn)作∠MON,使∠MON=90°,將∠MON繞點(diǎn)O旋轉(zhuǎn),OM、ON分別與⊙O相交于點(diǎn)E、F,分別與正四邊形ABCD的邊相交于點(diǎn)G、H.設(shè)由OE、OF、及正四邊形ABCD的邊圍成的圖形(圖中的陰影部分)的面積為S.①
(1)當(dāng)OM經(jīng)過點(diǎn)A時(shí)(如圖①),則S、S1、S2之間的關(guān)系為:S=______(用含S1、S2的代數(shù)式表示);
(2)當(dāng)OM⊥AB時(shí)(如圖②),點(diǎn)G為垂足,則(1)中的結(jié)論仍然成立嗎?請(qǐng)說明理由;
(3)當(dāng)∠MON旋轉(zhuǎn)到任意位置時(shí)(如圖③),則(1)中的結(jié)論仍然成立嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣東省佛山市南海區(qū)鹽步中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

閱讀下列材料,然后解答問題.
經(jīng)過正四邊形(即正方形)各頂點(diǎn)的圓叫作這個(gè)正四邊形的外接圓,圓心是正四邊形的對(duì)稱中心,這個(gè)正四邊形叫作這個(gè)圓的內(nèi)接正四邊形.
如圖,已知正四邊形ABCD的外接圓⊙O,⊙O的面積為S1,正四邊形ABCD的面積為S2,以圓心O為頂點(diǎn)作∠MON,使∠MON=90°,將∠MON繞點(diǎn)O旋轉(zhuǎn),OM、ON分別與⊙O相交于點(diǎn)E、F,分別與正四邊形ABCD的邊相交于點(diǎn)G、H.設(shè)由OE、OF、及正四邊形ABCD的邊圍成的圖形(圖中的陰影部分)的面積為S.①
(1)當(dāng)OM經(jīng)過點(diǎn)A時(shí)(如圖①),則S、S1、S2之間的關(guān)系為:S=______(用含S1、S2的代數(shù)式表示);
(2)當(dāng)OM⊥AB時(shí)(如圖②),點(diǎn)G為垂足,則(1)中的結(jié)論仍然成立嗎?請(qǐng)說明理由;
(3)當(dāng)∠MON旋轉(zhuǎn)到任意位置時(shí)(如圖③),則(1)中的結(jié)論仍然成立嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圓》(15)(解析版) 題型:解答題

(2010•邵陽)閱讀下列材料,然后解答問題.
經(jīng)過正四邊形(即正方形)各頂點(diǎn)的圓叫作這個(gè)正四邊形的外接圓,圓心是正四邊形的對(duì)稱中心,這個(gè)正四邊形叫作這個(gè)圓的內(nèi)接正四邊形.
如圖,已知正四邊形ABCD的外接圓⊙O,⊙O的面積為S1,正四邊形ABCD的面積為S2,以圓心O為頂點(diǎn)作∠MON,使∠MON=90°,將∠MON繞點(diǎn)O旋轉(zhuǎn),OM、ON分別與⊙O相交于點(diǎn)E、F,分別與正四邊形ABCD的邊相交于點(diǎn)G、H.設(shè)由OE、OF、及正四邊形ABCD的邊圍成的圖形(圖中的陰影部分)的面積為S.①
(1)當(dāng)OM經(jīng)過點(diǎn)A時(shí)(如圖①),則S、S1、S2之間的關(guān)系為:S=______(用含S1、S2的代數(shù)式表示);
(2)當(dāng)OM⊥AB時(shí)(如圖②),點(diǎn)G為垂足,則(1)中的結(jié)論仍然成立嗎?請(qǐng)說明理由;
(3)當(dāng)∠MON旋轉(zhuǎn)到任意位置時(shí)(如圖③),則(1)中的結(jié)論仍然成立嗎?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案