【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣ x+2分別與x、y軸交于點B、A,與反比例函數(shù)的圖象分別交于點C、D,CE⊥x軸于點E,OE=2.
(1)求反比例函數(shù)的解析式;
(2)連接OD,求△OBD的面積.
(3)x取何值時,反比例函數(shù)的值大于一次函數(shù)的值.
【答案】
(1)解:∵OE=2,CE⊥x軸于點E.
∴C的橫坐標(biāo)為﹣2,
把x=﹣2代入y=﹣ x+2得,y=﹣ ×(﹣2)+2=3,
∴點C的坐標(biāo)為C(﹣2,3).
設(shè)反比例函數(shù)的解析式為y= ,(m≠0)
將點C的坐標(biāo)代入,得3= .
∴m=﹣6.
∴該反比例函數(shù)的解析式為y=﹣ .
(2)解:由直線線y=﹣ x+2可知B(4,0),
解 得 , ,
∴D(6,﹣1),
∴S△OBD= ×4×1=2.
(3)由圖像可知-2<x<0或x>6
【解析】(1)要求反比例函數(shù)的解析式,根據(jù)題中的已知條件,CE⊥x軸于點E,OE=2.可知道點C的橫坐標(biāo)為-2,將x=-2代入y=﹣ x+2可得到點C的縱坐標(biāo),用待定系數(shù)法可以求出反比例函數(shù)的解析式;(2)要求△OBD的面積,就需求出點B和點D的坐標(biāo),兩函數(shù)圖像交于點D,建立二元一次方程組,可以求出點D的坐標(biāo),直線y=﹣ x+2交x軸于點B,y=0代入即可求得點B的坐標(biāo),進而根據(jù)三角形的面積公式求得即可。(3)已求出了點D的坐標(biāo)(6,﹣1),點C的坐標(biāo)為C(﹣2,3),觀察圖像可知直線x=-2,y軸,直線x=6將兩函數(shù)圖像分成四個部分,即x<-2,-2<x<0,0<x<6,x>6,觀察圖像即可得出結(jié)論。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知E,F分別是AB、CD上的動點,P也為一動點.
(1)如圖1,若AB∥CD,求證:∠P=∠BEP+∠PFD;
(2)如圖2,若∠P=∠PFD-∠BEP,求證:AB∥CD;
(3)如圖3,AB∥CD,移動E,F使得∠EPF=90°,作∠PEG=∠BEP,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架梯子AB長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點,點P在AB上.
(1)試找出∠1,∠2,∠3之間的關(guān)系并說出理由;
(2)如果點P在A,B兩點之間運動,問∠1,∠2,∠3之間的關(guān)系是否發(fā)生變化?
(3)如果點P在A,B兩點外側(cè)運動,試探究∠1,∠2,∠3之間的關(guān)系(點P和A,B不重合).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是邊BC上一點,AP與BD交于點M,DP與AC交于點N.
①若點P為BC的中點,則AM:PM=2:1;
②若點P為BC的中點,則四邊形OMPN的面積是8;
③若點P為BC的中點,則圖中陰影部分的總面積為28;
④若點P在BC的運動,則圖中陰影部分的總面積不變.
其中正確的是 . (填序號即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( )
A. 如果三角形三個角的度數(shù)比是3:4:5,那么這個三角形是直角三角形
B. 如果直角三角形兩直角邊的長分別為a和b,那么斜邊的長為a2+b2
C. 若三角形三邊長的比為1:2:3,則這個三角形是直角三角形
D. 如果直角三角形兩直角邊分別為a和b,斜邊為c,那么斜邊上的高h的長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把棱長為1cm的若干個小正方體擺放成如圖所示的幾何體,然后在露出的表面上涂上顏色(不含底面)
(1)該幾何體中有 小正方體?
(2)其中兩面被涂到的有 個小正方體;沒被涂到的有 個小正方體;
(3)求出涂上顏色部分的總面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點N,交AC于點M,連接MB.
(1)若∠ABC=70°,則∠NMA的度數(shù)是 度.
(2)若AB=8cm,△MBC的周長是14cm.
①求BC的長度;
②若點P為直線MN上一點,請你直接寫出△PBC周長的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com