如圖,四邊形ABCD是矩形,AB:AD=4:3,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE,則DE:AC=( )

A.1:3
B.3:8
C.8:27
D.7:25
【答案】分析:根據(jù)題意可得四邊形ACED是等腰梯形,即求上底與下底的比值,作高求解.
解答:解:從D,E處向AC作高DF,EH,垂足分別為F、H.
設(shè)AB=4k,AD=3k,則AC=5k.
由△AEC的面積=×4k×3k=×5k×EH,得EH=k;
根據(jù)勾股定理得CH=k.
所以DE=5k-k×2=
所以DE:AC=7:25.
故選D.
點(diǎn)評:本題的關(guān)鍵是利用折疊的特點(diǎn)及三角形面積的計(jì)算,求得EH,CH的長,從而求得DE的長,然后求比值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案