解答:解:(1)∵二次函數(shù)y=x
2+mx+n,當(dāng)-3<x<2時(shí),函數(shù)值y<0;當(dāng)x<-3或x>2時(shí),函數(shù)值y>0,
∴二次函數(shù)y=x
2+mx+n過(guò)點(diǎn)A(-3,0),B(2,0),
把A,B點(diǎn)代入二次函數(shù)解析式得:
,
解得:
,
∴二次函數(shù)的解析式為:y=x
2+x-6;
(2)如圖所示:過(guò)點(diǎn)B作BD⊥AC于點(diǎn)D,
當(dāng)x=0,則y=-6,
∴CO=6,
∵A(-3,0),B(2,0),
∴AO=3,BO=2,AB=5,
∴AC=
=3
,BC=2
,
∴DB×AC=AB×CO,
∴BD=
=
=2
,
∴sin∠DCB=
=
=
,
∴∠DCB=45°,
當(dāng)∠APB=∠ACB,即∠APB=∠ACB=45°,
∵AB=5,點(diǎn)P在直線(xiàn)y=-5上,
∴當(dāng)PA⊥AB垂足為A時(shí),PA=AB,∠BAP=90°,
∴∠APB=∠ABP=45°,此時(shí)P點(diǎn)坐標(biāo)為:(-3,-5),
當(dāng)∠AP′B=∠ACB,即∠AP′B=∠ACB=45°,
∵AB=5,點(diǎn)P′在直線(xiàn)y=-5上,
∴當(dāng)P′B⊥AB垂足為B時(shí),P′A=AB,∠P′BA=90°,
∴∠AP′B=∠BAP′=45°,此時(shí)P′點(diǎn)坐標(biāo)為:(2,-5),
綜上所述:在直線(xiàn)y=-5上是否存在點(diǎn)P,使得∠APB=∠ACB,點(diǎn)P的坐標(biāo)分別為:(-3,-5),(2,-5).