(2008•福州)如圖,在△ABC中,D,E分別是AB,AC的中點(diǎn),若DE=5,則BC的長(zhǎng)是   
【答案】分析:由D、E分別是邊AB、AC的中點(diǎn)可知,DE是△ABC的中位線,根據(jù)三角形的中位線定理求解即可.
解答:解:∵D,E分別是AB,AC的中點(diǎn),
∴DE為△ABC的中位線,
∵DE=5,
∴AB=2ED=10.
故答案為10.
點(diǎn)評(píng):本題考查了三角形的中位線定理:三角形的中位線平行于第三邊并等于三角形第三邊的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年中考數(shù)學(xué)考前沖刺試卷(解析版) 題型:解答題

(2008•福州)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長(zhǎng)最。咳绻嬖,求出周長(zhǎng)的最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省黃岡市黃梅縣中考數(shù)學(xué)模擬試卷(13)(解析版) 題型:解答題

(2008•福州)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長(zhǎng)最?如果存在,求出周長(zhǎng)的最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•福州)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長(zhǎng)最?如果存在,求出周長(zhǎng)的最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前知識(shí)點(diǎn)回歸+鞏固 專題13 二次函數(shù)(解析版) 題型:解答題

(2008•福州)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長(zhǎng)最?如果存在,求出周長(zhǎng)的最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省鄂州市一中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•福州)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長(zhǎng)最。咳绻嬖,求出周長(zhǎng)的最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案