新年晚會是我們最歡樂的時候,會場上,懸掛著五彩繽紛的小裝飾品,其中有各種各樣的立體圖形.

請你數(shù)一下上面圖中每一個立體圖形具有的頂點數(shù)(v)、棱數(shù)(e)和面數(shù)(f),并將結果記入下表中:
名稱各面形狀頂點數(shù)(v)棱數(shù)(e)面數(shù)(f)
正四面體正三角形
正方體正方形
正八面體正三角形
正十二面體正五邊形
偉大的數(shù)學家歐拉發(fā)現(xiàn)了f、e、v之間存在著一個奇妙的相等關系.根據(jù)上面的表格,你能歸納出這個相等關系嗎?

解:填表如下:
名稱各面形狀頂點數(shù)(v)棱數(shù)(e)面數(shù)(f)
正四面體正三角形 44 6
正方面體正方形 8612
正八面體正三角形 68 12
正十二面體正五邊形 201230
規(guī)律:v+f-e=2.
分析:根據(jù)各立方體查出頂點、棱數(shù)和面數(shù)解答即可;
從頂點數(shù)和棱數(shù)的和與面數(shù)的關系考慮求解.
點評:本題考查了歐拉公式,熟記立方體圖形的特點,準確查出頂點數(shù)、棱數(shù)和面數(shù)是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

35、新年晚會,是我們最歡樂的時候.會場上,懸掛著五彩繽紛的小裝飾,其中有各種各樣的立體圖形.

(1)數(shù)一下每一個多面體具有的頂點數(shù)(V)、棱數(shù)(E)和面數(shù)(F),并且把結果記入表中
多面體 頂點數(shù)(V) 面數(shù)(F) 棱數(shù)(E)
正四面體 4 4 6
正方體
正八面體
正十二面體
正二十面體 12 20 30
(2)觀察表中數(shù)據(jù),猜想多面體的頂點數(shù)(V)、棱數(shù)(E)和面數(shù)(F)之間的關系.
(3)偉大的數(shù)學家歐拉(Euler 1707-1783)證明了這一令人驚嘆的關系式,即歐拉公式.若已知一個多面體的頂點數(shù)V=196,棱的條數(shù)E=294.請你用歐拉公式求這個多面體的面數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

新年晚會是我們最歡樂的時候,會場上,懸掛著五彩繽紛的小裝飾品,其中有各種各樣的立體圖形.

請你數(shù)一下上面圖中每一個立體圖形具有的頂點數(shù)(v)、棱數(shù)(e)和面數(shù)(f),并將結果記入下表中:
名稱 各面形狀 頂點數(shù)(v) 棱數(shù)(e) 面數(shù)(f)
正四面體 正三角形
正方體 正方形
正八面體 正三角形
正十二面體 正五邊形
偉大的數(shù)學家歐拉發(fā)現(xiàn)了f、e、v之間存在著一個奇妙的相等關系.根據(jù)上面的表格,你能歸納出這個相等關系嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

新年晚會,是我們最歡樂的時候.會場上,懸掛著五彩繽紛的小裝飾,其中有各種各樣的立體圖形.

(1)數(shù)一下每一個多面體具有的頂點數(shù)(V)、棱數(shù)(E)和面數(shù)(F),并且把結果記入表中
多面體頂點數(shù)(V)面數(shù)(F)棱數(shù)(E)
正四面體446
正方體
正八面體
正十二面體
正二十面體122030
(2)觀察表中數(shù)據(jù),猜想多面體的頂點數(shù)(V)、棱數(shù)(E)和面數(shù)(F)之間的關系.
(3)偉大的數(shù)學家歐拉(Euler 1707-1783)證明了這一令人驚嘆的關系式,即歐拉公式.若已知一個多面體的頂點數(shù)V=196,棱的條數(shù)E=294.請你用歐拉公式求這個多面體的面數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:四川省期末題 題型:解答題

新年晚會,是我們最歡樂的時候.會場上,懸掛著五彩繽紛的小裝飾,其中有各種各樣的立體圖形.
(1)數(shù)一下每一個多面體具有的頂點數(shù)(V)、棱數(shù)(E)和面數(shù)(F),并且把結果記入表中
(2)觀察表中數(shù)據(jù),猜想多面體的頂點數(shù)(V)、棱數(shù)(E)和面數(shù)(F)之間的關系. (3)偉大的數(shù)學家歐拉(Euler 1707﹣1783)證明了這一令人驚嘆的關系式,即歐拉公式.若已知一個多面體的頂點數(shù)V=196,棱的條數(shù)E=294.請你用歐拉公式求這個多面體的面數(shù).

查看答案和解析>>

同步練習冊答案