如圖,△ABC中,∠C=30°,AC=4,BC=數(shù)學(xué)公式,D為BC的中點(diǎn),以AC為直徑作⊙O.
(1)試判斷點(diǎn)D與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)D作DE⊥AB于E,求證:DE與⊙O相切.

解:(1)點(diǎn)D在⊙O上.
理由如下:
過(guò)O作OF⊥CD于F,連接OD.
在Rt△OCF 中,OC=AC=2,∠C=30°,
∴OF=OC=1,CF=
∵CD=BC=2,∴DF=CD-CF=,
在Rt△ODF中,
∴OD=OC,∴點(diǎn)D在⊙O上.

(2)證明:∵D為BC中點(diǎn),O為AC中點(diǎn),∴OD為△ABC的中位線,
∴OD∥AB,∵DE⊥AB,∴DE⊥OD,∴⊙O與DE相切.
分析:(1)要求D與⊙O的位置關(guān)系,需先求OD的長(zhǎng),再與其半徑相比較;若大于半徑則在圓外,等于半徑在圓上,小于半徑則在圓內(nèi);
(2)要證明直線DE是⊙O的切線只要證明∠EDO=90°即可.
點(diǎn)評(píng):此題主要考查了點(diǎn)與圓的位置關(guān)系及切線的判定.解題時(shí)要注意連接過(guò)切點(diǎn)的半徑是圓中的常見(jiàn)輔助線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案