把方程3x2-6x-1=0化成(x+m)2=k的形式為_(kāi)_______.

(x-1)2=
分析:先移項(xiàng),再系數(shù)化成1,配方,即可得出答案.
解答:3x2-6x-1=0,
3x2-6x=1,
x2-2x=
x2-2x+1=+1,
(x-1)2=
故答案為:(x-1)2=
點(diǎn)評(píng):本題考查了解一元二次方程的應(yīng)用,能正確配方是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

認(rèn)真閱讀以下材料,并解答問(wèn)題:
(1)配方:利用完全平方公式,把二次三項(xiàng)式寫(xiě)成(a-k)2+h的形式.
例:x2-2x=x2-2•1•x+12-12=(x-1)2-1
(2)利用配方法解方程ax2+bx+c=0(a≠0)
例:解方程x2-2x-3=0
x2-2x=3
x2-2•1•x+12=3+12
(x-1)2=4
x-1=±2
∴x1=3,x2=-1
問(wèn)題:(1)把多項(xiàng)式直接寫(xiě)成(a-k)2+h的形式:x2-6x-3=
(x-3)2-12
(x-3)2-12

(2)用配方法解方程:x2+6x+8=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

認(rèn)真閱讀以下材料,并解答問(wèn)題:
(1)配方:利用完全平方公式,把二次三項(xiàng)式寫(xiě)成(a-k)2+h的形式.
例:x2-2x=x2-2•1•x+12-12=(x-1)2-1
(2)利用配方法解方程ax2+bx+c=0(a≠0)
例:解方程x2-2x-3=0
x2-2x=3
x2-2•1•x+12=3+12
(x-1)2=4
x-1=±2
∴x1=3,x2=-1
問(wèn)題:(1)把多項(xiàng)式直接寫(xiě)成(a-k)2+h的形式:x2-6x-3=______.
(2)用配方法解方程:x2+6x+8=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案