(本小題滿分10分)已知關(guān)于x的方程mx2-(3m-1)x+2m-2=0
(1)求證:無(wú)論m取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根.
(2)若關(guān)于x的二次函數(shù)y= mx2-(3m-1)x+2m-2的圖象與x軸兩交點(diǎn)間的距離為2時(shí),求拋物線的解析式.
(3)在直角坐標(biāo)系xoy中,畫出(2)中的函數(shù)圖象,結(jié)合圖象回答問(wèn)題:當(dāng)直線y=x+b與(2)中的函數(shù)圖象只有兩個(gè)交點(diǎn)時(shí),求b的取值范圍.

(1)略
(2)y1= xx-2)或y2=x-2)(x-4)
(3)當(dāng)b<-或b>-或b=-2時(shí),直線y=x+b與(2)中的圖象只有兩個(gè)交點(diǎn)解析:
解:(1)分兩種情況討論:
①當(dāng)m=0 時(shí),方程為x-2=0,∴x="2" 方程有實(shí)數(shù)根
②當(dāng)m≠0時(shí),則一元二次方程的根的判別式
△=[-(3m-1)]2-4m(2m-2)=m2+2m+1=(m+1)2≥0
不論m為何實(shí)數(shù),△≥0成立,∴方程恒有實(shí)數(shù)根
綜合①②,可知m取任何實(shí)數(shù),方程mx2-(3m-1)x+2m-2=0恒有實(shí)數(shù)根.
(2)設(shè)x1x2為拋物線y= mx2-(3m-1)x+2m-2與x軸交點(diǎn)的橫坐標(biāo).
則有x1+x2=,x1·x2=
由| x1x2|====,
由| x1x2|=2得=2,∴=2或=-2
m=1或m=
∴所求拋物線的解析式為:y1=x2-2xy2=x2+2x
y1= xx-2)或y2=x-2)(x-4)其圖象如圖所示.

(3)在(2)的條件下,直線y=x+b與拋物線y1,y2組成的圖象只有兩個(gè)交點(diǎn),結(jié)合圖象,求b的取值范圍.
,當(dāng)y1=y時(shí),得x2-3xb=0,△=9+4b=0,解得b=-;
同理,可得△=9-4(8+3b)=0,得b=-.
觀察函數(shù)圖象可知當(dāng)b<-或b>-時(shí),直線y=x+b與(2)中的圖象只有兩個(gè)交點(diǎn).

當(dāng)y1=y2時(shí),有x=2或x=1
當(dāng)x=1時(shí),y=-1
所以過(guò)兩拋物線交點(diǎn)(1,-1),(2,0)的直線y=x-2,
綜上:當(dāng)b<-或b>-或b=-2時(shí),直線y=x+b與(2)中的圖象只有兩個(gè)交點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分10分)一個(gè)不透明的口袋里裝有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中白球有2個(gè),黃球有1個(gè).若從中任意摸出一個(gè)球,這個(gè)球是白球的概率為
(1)求口袋中紅球的個(gè)數(shù);
(2)把口袋中的球攪勻后摸出一個(gè)球,放回?cái)噭蛟倜龅诙䝼(gè)球,求摸到的兩個(gè)球是一紅一白的概率.(請(qǐng)結(jié)合樹狀圖或列表加以解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河北省中考模擬試卷數(shù)學(xué)卷 題型:解答題

(本小題滿分10分)
如圖,在平面直角坐標(biāo)系中,直線L:y=-2x-8分別與x軸、y軸相交于A、B兩點(diǎn),點(diǎn)P(0,k)是y軸的負(fù)半軸上的一個(gè)動(dòng)點(diǎn),以P為圓心,3為半徑作⊙P。

(1)連結(jié)PA,若PA=PB,試判斷⊙P與X軸的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)K為何值時(shí),以⊙P與直線L的兩個(gè)交點(diǎn)和圓心P為頂點(diǎn)的三角形是正三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年四川省鹽源縣民族中學(xué)中考模擬試題數(shù)學(xué)卷 題型:解答題

(本小題滿分10分)如圖,在等腰梯形ABCD中,ADBCAB=DC=5,AD=6,BC=12.動(dòng)點(diǎn)PD點(diǎn)出發(fā)沿DC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)QC點(diǎn)出發(fā)沿CB以每秒2個(gè)單位的速度向B點(diǎn)運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),Q點(diǎn)隨之停止運(yùn)動(dòng).

【小題1】(1)求梯形ABCD的面積;
【小題2】(2)當(dāng)P點(diǎn)離開D點(diǎn)幾秒后,PQ//AB
【小題3】(3)當(dāng)P、Q、C三點(diǎn)構(gòu)成直角三角形時(shí),求點(diǎn)P從點(diǎn)D運(yùn)動(dòng)的時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年河北省衡水市五校九年級(jí)第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

(本小題滿分10分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C、P的坐標(biāo)分別為(0,1)、(-1,0)、(1,0)、(-1,-1)。

【小題1】(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的表達(dá)式;
【小題2】(2)以P為位似中心,將△ABC放大,使得放大后的△A1B1C1
與△OAB對(duì)應(yīng)線段的比為3:1,請(qǐng)?jiān)谟覉D網(wǎng)格中畫出放大
后的△A1B1C1;(所畫△A1B1C1與△ABC在點(diǎn)P同側(cè));
【小題3】(3)經(jīng)過(guò)A1、B1、C1三點(diǎn)的拋物線能否由(1)中的拋物線平
移得到?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆河南省商丘市九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿分10分)
在圖1至圖3中,直線MN與線段AB相交
于點(diǎn)O,∠1 = ∠2 = 45°.

【小題1】(1)如圖1,若AO OB,請(qǐng)寫出AOBD
的數(shù)量關(guān)系和位置關(guān)系;
【小題2】(2)將圖1中的MN繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到
圖2,其中AO = OB
求證:AC BD,AC ⊥ BD
【小題3】(3)將圖2中的OB拉長(zhǎng)為AOk倍得到
圖3,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案