29、如圖,△ABC、△ADE是等邊三角形,B、C、D在同一直線上.
求證:(1)CE=AC+DC;(2)∠ECD=60°.
分析:(1)根據(jù)△ABC、△ADE都是等邊三角形,得到AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,推出∠BAD=∠CAE,得到△BAD≌△CAE,根據(jù)全等三角形的性質(zhì)得到BD=EC,即可推出答案;
(2)由(1)知:△BAD≌△CAE,根據(jù)平角的意義即可求出∠ECD的度數(shù).
解答:(1)證明:∵△ABC、△ADE是等邊三角形,
∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,
∴,∠BAC+∠CAD=∠DAE+∠CAD,
即:∠BAD=∠CAE,
∴△BAD≌△CAE,
∴BD=EC,
∵BD=BC+CD=AC+CD,
∴CE=BD=BC+CD;

(2)證明:由(1)知:△BAD≌△CAE,
∴∠ACE=∠ABD=60°,
∴∠ECD=180°-∠ACB-∠ACE=60°,
∴∠ECD=60°.
點(diǎn)評(píng):本題主要考查了全等三角形的性質(zhì)和判定,等邊三角形的性質(zhì),平角的定義等知識(shí)點(diǎn),解此題的關(guān)鍵是根據(jù)等邊三角形的性質(zhì)證出△BAD≌△CAE和∠ACE=∠ABD.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,△ABC中,∠ACB=90°,CD⊥AB于D,則圖中所有與∠B互余的角
∠A與∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,AB的延長(zhǎng)線與過C點(diǎn)的切線GC相交于點(diǎn)D,BE與AC相交于點(diǎn)F精英家教網(wǎng),且CB=CE.
求證:(1)BE∥DG;
(2)CB2-CF2=BF•FE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:如圖,△ABC內(nèi)接于⊙O,AE切⊙O于點(diǎn)A,BD∥AE交AC的延長(zhǎng)線于點(diǎn)D,求證:AB2=AC•AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC、△DCE、△FEG是全等的三個(gè)等腰三角形,底邊BC、CE、EG在同一直線上,且AB=
3
,BC=1,連接BF交AC、DC、DE分別為P、Q、R.
試證△BFG∽△FEG,并求出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC的兩個(gè)外角的平分線相交于D,若∠B=50°,則∠ADC=( 。
A、60°B、80°C、65°D、40°

查看答案和解析>>

同步練習(xí)冊(cè)答案