如圖PA是△ABC的外接圓O的切線,A是切點(diǎn),PD∥AC,且PD與AB、AC分別相交于E、D.
求證:(1)∠PAE=∠BDE;
(2)EA•EB=ED•EP.

【答案】分析:(1)由于AP是切線,那么∠PAE=∠ACB,而PD∥AC,于是有∠PDB=∠BDE,那么∠PAE=∠BDE;
(2)由(1)得∠PAE=∠BDE,又∠AEP=∠DEB,從而可得△AEP∽△DEB,于是有AE:PE=DE:BE,易得證.
解答:證明:如右圖所示,
(1)∵AP是切線,
∴∠PAE=∠ACB,
又∵PD∥AC,
∴∠PDB=∠BDE,
∴∠PAE=∠BDE;

(2)由(1)得∠PAE=∠BDE,
又∵∠AEP=∠DEB,
∴△AEP∽△DEB,
∴AE:PE=DE:BE,
∴EA•EB=ED•EP.
點(diǎn)評:本題考查了切線的性質(zhì)、平行線的性質(zhì)、弦切角定理、相似三角形的判定和性質(zhì).解題的關(guān)鍵是利用弦切角定理知道∠PAE=∠ACB.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖PA是△ABC的外接圓O的切線,A是切點(diǎn),PD∥AC,且PD與AB、AC分別相交于E、D.
求證:(1)∠PAE=∠BDE;
(2)EA•EB=ED•EP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:
(1)如圖,AB、CD是⊙O的兩條弦,它們相交于點(diǎn)P,連接AD、BD,已知AD=BD=4,PC=6,那么CD的長是
 

精英家教網(wǎng)
(2)閱讀材料:如圖,過△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
1
2
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
精英家教網(wǎng)
解答下列問題:
如圖,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
①求拋物線和直線AB的解析式;
②點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB
③點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動點(diǎn),是否存在一點(diǎn)P,使S△PAB=
9
8
S△CAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•豐南區(qū)一模)閱讀材料:如圖,過△ABC的三個(gè)頂點(diǎn)分別作出水平垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可以得出一種計(jì)算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:如圖,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4)交x軸于點(diǎn)A,交y軸于點(diǎn)B(0,3)

(1)求拋物線解析式和線段AB的長度;
(2)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
(3)在第一象限內(nèi)拋物線上求一點(diǎn)P,使S△PAB=S△CAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖PA是△ABC的外接圓O的切線,A是切點(diǎn),PD∥AC,且PD與AB、AC分別相交于E、D.
求證:(1)∠PAE=∠BDE;
(2)EA•EB=ED•EP.

查看答案和解析>>

同步練習(xí)冊答案