【題目】西瓜和甜瓜是新疆特色水果,小明的媽媽先購買了2千克西瓜和3千克甜瓜,共花費9元;后又購買了1千克西瓜和2千克甜瓜,共花費5.5元.(每次兩種水果的售價都不變)
(1)求兩種水果的售價分別是每千克多少元?
(2)如果還需購買兩種水果共12千克,要求甜瓜的數量不少于西瓜數量的兩倍,請設計一種購買方案,使所需總費用最低.
【答案】
(1)解:設西瓜售價為每千克x元,甜瓜的售價為每千克y元,
根據題意得: ,
解得: ;
答:西瓜的售價為每千克1.5元,甜瓜的售價為每千克2元
(2)解:設購買西瓜t千克,總費用為W元,則購買甜瓜(12﹣t)千克,
根據題意得:12﹣t≥2t,
∴t≤4,
∵W=15t+20(12﹣t)=﹣5t+240,
k=﹣5<0,
∴W隨t的增大而減小,
∴當t=4時,W的最小值=220(元),此時12﹣4=8;
答:購買西瓜4千克,甜瓜8千克時,所需總費用最低
【解析】(1)設西瓜售價為每千克x元,甜瓜的售價為每千克y元;根據單價和費用關系列出方程組,解方程組即可;(2)設購買西瓜t千克,總費用為W元,則購買甜瓜(12﹣t)千克,根據題意得出12﹣t≥2t,得出t≤4,由題意得出W=﹣5t+240,由一次函數的性質得出W隨t的增大而減小,得出當t=4時,W的最小值=220(元),求出12﹣4=8即可.
科目:初中數學 來源: 題型:
【題目】直線AB:y=-x-b分別與x,y軸交于A(6,0)、B兩點,過點B的直線交x軸負半軸于C,且OB:OC=3:1.
(1)求點B的坐標;
(2)求直線BC的解析式;
(3)直線EF:y=2x-k(k≠0)交AB于E,交BC于點F,交x軸于點D,是否存在這樣的直線EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=90°,OM平分∠AOB,直角三角板的直角頂點P在射線OM上移動,兩直角邊分別與OA、CB相交于點C、D.
(1)問PC與PD相等嗎?試說明理由.
(2)若OP=2,求四邊形PCOD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCO為正方形,A點坐標為(0,2),點P為x軸負半軸上一動點,以AP為直角作等腰直角三角形APD,∠APD=90°(點D落在第四象限)
(1)當點P的坐標為(﹣1,0)時,求點D的坐標;
(2)點P在移動的過程中,點D是否在直線y=x﹣2上?請說明理由;
(3)連接OB交AD于點G,求證:AG=DG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一般情況下不成立,但有些數可以使得它成立,例如:a=b=0.我們稱使得成立的一對數a,b為“相伴數對”,記為(a,b).
(1)若(1,b)是“相伴數對”,求b的值;
(2)若(m,n)是“相伴數對”,其中m≠0,求;
(3)若(m,n)是“相伴數對”,求代數式m﹣﹣[4m﹣2(3n﹣1)]的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數軸上,O表示原點,A、B兩點分別表示﹣8和2.
(1)求出線段AB的長度;
(2)動點P從A出發(fā)沿數軸向右運動,速度為每秒5個單位長度;同時點Q從B出發(fā),沿數軸向右運動,速度為每秒3個單位長度,當P、Q重合時,兩點同時停止運動.設兩點運動時間為t秒,用含有t的式子表示線段PQ的長;
(3)在(2)的條件下,t為何值時,點P、點Q到原點O的距離相等.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,數學實習小組在高300米的山腰(即PH=300米)P處進行測量,測得對面山坡上A處的俯角為30°,對面山腳B處的俯角60°,已知tan∠ABC= ,點P,H,B,C,A在同一個平面上,點H,B,C在同一條直線上,且PH⊥BC,則A,B兩點間的距離為米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,已知,在△ABC中,∠ACB=90°,AC=BC,點D是AB邊上的中點,點M和點N是動點,分別從A,C出發(fā),以相同的速度沿AC,CB邊上運動.
(1)判斷DM與DN的關系,并說明理由;
(2)若AC=BC=2,請直接寫出四邊形MCND的面積;
(3)如圖②,當點M運動到C點后,將改變方向沿著CB運動,此時,點N在CB延長線上,過M作ME⊥CD于點E,過點N作NF⊥DB交DB延長線于F,求證:ME=NF.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com