如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)線段BD與CD有什么數(shù)量關(guān)系,并說明理由;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形AFBD是矩形?并說明理由.
(1)BD=CD,理由見解析;(2)AB=AC,理由見解析.

試題分析:(1)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AF=CD,再利用等量代換即可得證;
(2)先利用一組對(duì)邊平行且相等的四邊形是平行四邊形證明四邊形AFBD是平行四邊形,再根據(jù)一個(gè)角是直角的平行四邊形是矩形,可知∠ADB=90°,由等腰三角形三線合一的性質(zhì)可知必須是AB=AC.
試題解析:(1)BD=CD.
理由如下:依題意得AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中點(diǎn),
∴AE=DE,
在△AEF和△DEC中,

∴△AEF≌△DEC(AAS),
∴AF=CD,
∵AF=BD,
∴BD=CD;
(2)當(dāng)△ABC滿足:AB=AC時(shí),四邊形AFBD是矩形.
理由如下:∵AF∥BD,AF=BD,
∴四邊形AFBD是平行四邊形,
∵AB=AC,BD=CD,
∴∠ADB=90°,
∴?AFBD是矩形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上的一點(diǎn),且DF=BE。

(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,AC=BD,且AC⊥BD, E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).則四邊形EFGH是怎樣的四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知四邊形ABCD中,AC交BD于點(diǎn)O,如果只給條件“AB∥CD”,那么還不能判定四邊形ABCD為平行四邊形,給出以下四種說法:
(1)如果再加上條件“BC=AD”,那么四邊形ABCD一定是平行四邊形;
(2)如果再加上條件“”,那么四邊形ABCD一定是平行四邊形;
(3)如果再加上條件“AO=OC”,那么四邊形ABCD一定是平行四邊形;
(4)如果再加上條件“”,那么四邊形ABCD一定是平行四邊形
其中正確的說法有 (    ) 個(gè) .
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,梯形ABCD中,AD∥BC,AB=3,BC=4,連結(jié)BD,∠BAD的平分線交BD于 點(diǎn)E,且AE∥CD,則AD的長(zhǎng)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在□ABCD中,∠A=130º,在AD上取DE=DC,則∠ECB的度數(shù)是     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在四邊形ABCD中,若有下列四個(gè)條件:①AB//CD;②AD=BC;③∠A=∠C;④AB=CD,現(xiàn)以其中的兩個(gè)條件為一組,能判定四邊形ABCD是平行四邊形的條件有    (    )
A.3組B.4組C.5組D.6組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,平行四邊形ABCD中,CE⊥AB于E,若∠A=125°,則∠BCE的度數(shù)為(   )
A.35°B.55°C.25°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)多邊形的外角和是內(nèi)角和的一半,則它是( 。┻呅
A.7 B.6 C.5 D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案