【題目】如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A’B’C.若=40°,=110°,則∠的度數(shù)為( )

A. 30° B. 50° C. 80° D. 90°

【答案】C

【解析】首先根據(jù)旋轉(zhuǎn)的性質(zhì)可得:∠A=A,ACB=ACB,即可得到∠A=40°,再有∠B=110°,利用三角形內(nèi)角和可得∠ACB的度數(shù),進而得到∠ACB的度數(shù),再由條件將ABC繞著點C順時針旋轉(zhuǎn)50°后得到ABC可得∠ACA=50°,即可得到∠BCA的度數(shù).

根據(jù)旋轉(zhuǎn)的性質(zhì)可得:∠A=A,ACB=ACB,

∵∠A=40°,

∴∠A=40°,

∵∠B=110°,

∴∠ACB=180°-110°-40°=30°,

∴∠ACB=30°

∵將ABC繞著點C順時針旋轉(zhuǎn)50°后得到ABC,

∴∠ACA=50°,

∴∠BCA=30°+50°=80°

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麻城市思源實驗學(xué)校自從開展“高效課堂”模式以來,在課堂上進行當(dāng)堂檢測效果很好.每節(jié)課40分鐘教學(xué),假設(shè)老師用于精講的時間x(單位:分鐘)與學(xué)生學(xué)習(xí)收益量y的關(guān)系如圖1所示,學(xué)生用于當(dāng)堂檢測的時間x(單位:分鐘)與學(xué)生學(xué)習(xí)收益y的關(guān)系如圖2所示(其中OA是拋物線的一部分,A為拋物線的頂點),且用于當(dāng)堂檢測的時間不超過用于精講的時間.
(1)求老師精講時的學(xué)生學(xué)習(xí)收益量y與用于精講的時間x之間的函數(shù)關(guān)系式;
(2)求學(xué)生當(dāng)堂檢測的學(xué)習(xí)收益量y與用于當(dāng)堂檢測的時間x的函數(shù)關(guān)系式;
(3)問此“高效課堂”模式如何分配精講和當(dāng)堂檢測的時間,才能使學(xué)生在這40分鐘的學(xué)習(xí)收益總量最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末小明和同學(xué)們?nèi)ァ熬G博園”的楓湖坐船,觀賞風(fēng)景;如圖,小明正在A處的小船上,B處小船上的游客發(fā)現(xiàn)點A在點B的正西方向上,C處小船上的游客發(fā)現(xiàn)點A在點C的南偏東30°方向上,已知點C在點B的北偏西60°方向上,且B、C兩地相距120米.

(1)求出此時點A到點C的距離;
(2)若小明從A處沿AC方向向C駛?cè),?dāng)?shù)竭_點A′時,測得點B在A′的南偏東75°的方向上,求此時小明所乘坐的小船走的距離.(注:結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,ACBDCE均為等邊三角形,點AD,E在同一直線上,連接BE,則AEB的度數(shù)為__________.

(2)如圖2,ACBDCE均為等腰直角三角形,ACB=DCE=90°,點A,D,E在同一直線上,CMDCEDE邊上的高,連接BE.求AEB的度數(shù)及線段CMAE,BE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】積極響應(yīng)政府提出的“綠色發(fā)展·碳出行”號召,某社區(qū)決定購置一批共享單車,經(jīng)市場調(diào)查知,購買3量男式單車與4輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000元.

(1)求男式單車和女式單車的單價;

(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的3月22日為聯(lián)合國確定的“世界水日”,某社區(qū)為了宣傳節(jié)約用水,從本社區(qū)1000戶家庭中隨機抽取部分家庭,調(diào)查他們每月的用水量,并將調(diào)查的結(jié)果繪制成如下兩幅尚不完整的統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解答下列問題:
(1)此次抽樣調(diào)查的樣本容量是;
(2)補全頻數(shù)分布直方圖,求扇形圖中“6噸﹣﹣9噸”部分的圓心角的度數(shù);
(3)如果自來水公司將基本月用水量定為每戶每月12噸,不超過基本月用水量的部分享受基本價格,超出基本月用水量的部分實行加價收費,那么該社會用戶中約有多少戶家庭能夠全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+b與反比例函數(shù)y= 的圖形交于A(a,4)和B(4,1)兩點.
(1)求b,k的值;
(2)在第一象限內(nèi),當(dāng)一次函數(shù)y=﹣x+b的值大于反比例函數(shù)y= 的值時,直接寫出自變量x的取值范圍;
(3)將直線y=﹣x+b向下平移m個單位,當(dāng)直線與雙曲線只有一個交點時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有下列判斷:①A與1是同位角;②A與B是同旁內(nèi)角;③4與1是內(nèi)錯角;④1與3是同位角. 其中正確的是 (填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC的斜邊AB的兩個端點,交直角邊AC于點E.B、E是半圓弧的三等分點,弧BE的長為 ,則圖中陰影部分的面積為

查看答案和解析>>

同步練習(xí)冊答案