下列圖案中既是軸對稱圖形,又是中心對稱圖形的是( 。

  A.  B.  C.  D.


B. 解:A、不是軸對稱圖形,也不是中心對稱圖形;

B、既是軸對稱圖形,又是中心對稱圖形;

C、不是軸對稱圖形,也不是中心對稱圖形;

D、不是軸對稱圖形,是中心對稱圖形.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


不透明的袋子里裝有1個紅球、1個白球,這些球除顏色外無其他差別.從袋子中隨機

摸出一個球,則摸出紅球的概率是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知拋物線y=ax2+bx+c經(jīng)過A(﹣2,0),B(4,0),C(0,3)三點.

(1)求該拋物線的解析式;

(2)在y軸上是否存在點M,使△ACM為等腰三角形?若存在,請直接寫出所有滿足要求的點M的坐標(biāo);若不存在,請說明理由;

(3)若點P(t,0)為線段AB上一動點(不與A,B重合),過P作y軸的平行線,記該直線右側(cè)與△ABC圍成的圖形面積為S,試確定S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計算:(﹣2)3+3tan45°﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx的對稱軸為x=,且經(jīng)過點A(2,1),點P是拋物線上的動點,P的橫坐標(biāo)為m(0<m<2),過點P作PB⊥x軸,垂足為B,PB交OA于點C,點O關(guān)于直線PB的對稱點為D,連接CD,AD,過點A作AE⊥x軸,垂足為E.

(1)求拋物線的解析式;

(2)填空:

①用含m的式子表示點C,D的坐標(biāo):

C(   ,   ),D(      );

②當(dāng)m=   時,△ACD的周長最。

(3)若△ACD為等腰三角形,求出所有符合條件的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點A(﹣2,0),與x軸夾角為30°,將△ABO沿直線AB翻折,點O的對應(yīng)點C恰好落在雙曲線y=(k≠0)上,則k的值為(  )

  A. 4 B. ﹣2 C.  D. ﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在菱形ABCD中,對角線AC與BD相交于點O,AC=8,BD=6,OE⊥BC,垂足為點E,則OE=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


不等式3+2x>5的解集是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某商店以40元/千克的單價新進一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量y(千克)與銷售單價x(元/千克)之間的函數(shù)關(guān)系如圖所示.

(1)根據(jù)圖象求yx的函數(shù)關(guān)系式;

(2)商店想在銷售成本不超過3000元的情況下,使銷售利潤達到2400元,銷售單價應(yīng)定為多少?

查看答案和解析>>

同步練習(xí)冊答案