如圖,已知在□ABCD中,AB⊥AC,AB=OA,BC=,對(duì)角線AC、BD交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC、AD于點(diǎn)EF.
(1)證明:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;
(2)試證明在旋轉(zhuǎn)過(guò)程中,線段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不可能,請(qǐng)說(shuō)明理由;如果可能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).
(1)當(dāng)旋轉(zhuǎn)角為90°時(shí),∠AOF=90°,由AB⊥AC,可得AB∥EF,即可證明四邊形ABEF為平行四邊形;
(2)根據(jù)平行四邊形的性質(zhì)證得△AOF≌△COE即可;(3)45度.
解析試題分析:(1)當(dāng)旋轉(zhuǎn)角為90°時(shí),∠AOF=90°,由AB⊥AC,可得AB∥EF,即可證明四邊形ABEF為平行四邊形;
(2)根據(jù)平行四邊形的性質(zhì)證得△AOF≌△COE即可;
(3)EF⊥BD時(shí),四邊形BEDF為菱形,可根據(jù)勾股定理求得AC=2,則OA=1=AB,又AB⊥AC,即可求得結(jié)果.
(1)當(dāng)∠AOF=90°時(shí),AB∥EF,
又∵AF∥BE,
∴四邊形ABEF為平行四邊形.
(2)∵四邊形ABCD為平行四邊形,
在△AOF和△COE中
∵∠FAO=∠ECO,AO=CO,∠AOF=∠ECO
∴△AOF≌△COE(ASA)
∴AF=EC;
(3)四邊形BEDF可以是菱形.
理由:如圖,連接BF,DE
由(2)知△AOF≌△COE,得OE=OF,
∴EF與BD互相平分.
∴當(dāng)EF⊥BD時(shí),四邊形BEDF為菱形.
在Rt△ABC中,
∴OA=1=AB,
又∵AB⊥AC,
∴∠AOB=45°,
∴∠AOF=45°,
∴AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)45°時(shí),四邊形BEDF為菱形.
考點(diǎn):旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì),菱形的判定,勾股定理
點(diǎn)評(píng):本題知識(shí)點(diǎn)較多,綜合性強(qiáng),是中考常見題,難度不大,學(xué)生需熟練掌握平面圖形的基本概念.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com