【題目】如圖所示,點(diǎn)D是等腰Rt△ABC的斜邊BC上一動(dòng)點(diǎn),連接AD,作等腰Rt△ADE,使AD=AE,且∠DAE=90°連接BE、CE.
(1)判斷BD與CE的數(shù)量關(guān)系與位置關(guān)系,并進(jìn)行證明;
(2)當(dāng)四邊形ADCE的周長(zhǎng)最小值是6時(shí),求BC的值.
【答案】(1)BD=CE,BD⊥CE;理由見解析;(2)BC=3.
【解析】
(1)利用SAS證出△ABD≌△ACE,然后根據(jù)全等三角形的性質(zhì)和等腰直角三角形的性質(zhì)即可求出結(jié)論;
(2)根據(jù)周長(zhǎng)公式即可求出,四邊形ADCE的周長(zhǎng)=2AD+BC,其中BC為定值,四邊形ADCE的周長(zhǎng)最小,即AD最小,當(dāng)AD⊥BC時(shí),根據(jù)垂線段最短,此時(shí)AD最小,則四邊形ADCE的周長(zhǎng)最小,根據(jù)三線合一和直角三角形斜邊上的中線等于斜邊的一半,可得AD=BC,從而求出BC.
解:(1)BD=CE,BD⊥CE;
理由:∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
在△ABD與△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE,∠ABD=∠ACE=45°,
∵∠ACB=45°,
∴∠BCE=90°,
∴BD⊥CE;
(2)∵四邊形ADCE的周長(zhǎng)=AD+AE+CE+CD=2AD+BD+CD=2AD+BC,其中BC為定值,
∴四邊形ADCE的周長(zhǎng)最小,即AD最小,
當(dāng)AD⊥BC時(shí),根據(jù)垂線段最短,此時(shí)AD最小,則四邊形ADCE的周長(zhǎng)最小,
∵△ABC為等腰三角形,AD⊥BC
∴AD=BC
∴此時(shí)四邊形ADCE的周長(zhǎng)= 2AD+BC=2×BC+BC=6
解得:BC=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題:
(1)4+(-2)=_____________; (2)-3-(-2)=__________;
(3)-2×5=_____________; (4)-6÷(-3)=__________;
(5)=_____________; (6)=__________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長(zhǎng)方形的邊在數(shù)軸上,為原點(diǎn),長(zhǎng)方形的面積為12,邊的長(zhǎng)為3.
(1)數(shù)軸上點(diǎn)表示的數(shù)為________.
(2)將長(zhǎng)方形沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的長(zhǎng)方形記為,設(shè)長(zhǎng)方形移動(dòng)的距離為,移動(dòng)后的長(zhǎng)方形與原長(zhǎng)方形重疊部分的面積記為.
①當(dāng)等于原長(zhǎng)方形面積的時(shí),則點(diǎn)的移動(dòng)距離_______,此時(shí)數(shù)軸上點(diǎn)表示的數(shù)為_______.
②為線段的中點(diǎn),點(diǎn)在線段上,且當(dāng)點(diǎn),所表示的數(shù)互為相反數(shù)時(shí),則的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對(duì)角線AC、BD交于點(diǎn)O,
(1)如圖2,將△AOD沿DB平移,使點(diǎn)D與點(diǎn)O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.
(2)如圖3,將△A′BO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)交AB于點(diǎn)E′,交BC于點(diǎn)F,
①求證:BE′+BF=2,
②求出四邊形OE′BF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩點(diǎn)在反比例函數(shù)y=的圖象上,C,D兩點(diǎn)在反比例函數(shù)y=的圖象上,AC⊥x軸于點(diǎn)E,BD⊥x軸于點(diǎn)F,AC=2,BD=3,EF=,則k2-k1的值為( )
A. 4 B. C. D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖A、O、E三點(diǎn)在同一條直線上,∠AOB=∠COD=90°,觀察圖形后有以下四個(gè)結(jié)論,其中正確的結(jié)論是( 。
A.∠BOC=∠AOC=∠BOD
B.圖中小于平角的角有6個(gè)
C.∠BOC與∠AOD互補(bǔ)
D.∠BOD和∠AOC互余
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于任意有理數(shù)a,b,定義運(yùn)算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運(yùn)算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.
(1)求(﹣2)⊙3的值;
(2)對(duì)于任意有理數(shù)m,n,請(qǐng)你重新定義一種運(yùn)算“⊕”,使得5⊕3=20,寫出你定義的運(yùn)算:m⊕n= (用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x-2與y軸相交于點(diǎn)A,與反比例函數(shù)y=在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).
(1)求該反比例函數(shù)的關(guān)系式;
(2)若直線y=x-2向上平移后與反比例函數(shù)y=在第一象限內(nèi)的圖象相交于點(diǎn)C,且△ABC的面積為18,求平移后的直線對(duì)應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com