【題目】如圖所示,A是反比例函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)AABy軸于點(diǎn)B,點(diǎn)Px軸上,△ABP的面積為4,則這個(gè)反比例函數(shù)的解析式為_____

【答案】y=﹣

【解析】

連接OA,設(shè)反比例函數(shù)的解析式為y=k0),根據(jù)△ABO和△ABP同底等高利用反比例函數(shù)系數(shù)k的幾何意義結(jié)合△ABP的面積為4即可求出k,再根據(jù)反比例函數(shù)在第二象限有圖象,由此即可確定k從而得出結(jié)論

連接OA,如圖所示.

設(shè)反比例函數(shù)的解析式為y=k0).

ABy,點(diǎn)Px軸上,∴△ABO和△ABP同底等高SABO=SABP=|k|=4,

解得k=±8

∵反比例函數(shù)在第二象限有圖象,k=﹣8,∴反比例函數(shù)的解析式為y=﹣

故答案為:y=﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的中線,E,F分別是ADAD延長(zhǎng)線上的點(diǎn),且DE=DF,連接BFCE.下列說(shuō)法:①△BDF≌△CDE;②CE=BF; BFCE;④△ABDACD周長(zhǎng)相等.其中正確的有___________(只填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)為等邊三角形內(nèi)一點(diǎn),連接,,以為一邊作,且,連接、.

(1)判斷的大小關(guān)系并證明;

(2)若,,判斷的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BAD=90°,點(diǎn)EBC的延長(zhǎng)線上,且∠DEC=BAC.

(1)求證:DE是⊙O的切線;

(2)若ACDE,當(dāng)AB=8,CE=2時(shí),求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的頂點(diǎn)B,C在x軸的正半軸上,反比例函數(shù)y= (k≠0)在第一象限的圖象經(jīng)過(guò)頂點(diǎn)A(m,2)和CD邊上的點(diǎn)E(n,),過(guò)點(diǎn)E的直線l交x軸于點(diǎn)F,交y軸于點(diǎn)G(0,-2),則點(diǎn)F的坐標(biāo)是(  )

A. (,0)B. (,0)C. (,0)D. (,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線ab互相平行的是( )

A. 如圖1,展開(kāi)后測(cè)得∠1=∠2

B. 如圖2,展開(kāi)后測(cè)得∠1=∠2∠3=∠4

C. 如圖3,測(cè)得∠1=∠2

D. 如圖4,展開(kāi)后再沿CD折疊,兩條折痕的交點(diǎn)為O,測(cè)得OA=OB,OC=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】灞橋區(qū)教育局為了了解七年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)抽取了鐵一中濱河學(xué)部分七年級(jí)學(xué)生2016﹣2017學(xué)年第一學(xué)期參加實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題:

(1)a=   %,并補(bǔ)全條形圖.

(2)在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?

(3)如果該區(qū)共有七年級(jí)學(xué)生約9000人,請(qǐng)你估計(jì)活動(dòng)時(shí)間不少于6天的學(xué)生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖示,下列結(jié)論:

(1)b0;(2)c0;(3)b2﹣4ac0; (4)a﹣b+c0,

(5)2a+b0; (6)abc0;其中正確的是_____;(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,DE平分∠ADCBC邊于點(diǎn)E,PDE上的一點(diǎn)(PEPD),PMPD,PMAD邊于點(diǎn)M.

(1)若點(diǎn)F是邊CD上一點(diǎn),滿足PFPN,且點(diǎn)N位于AD邊上,如圖1所示.

求證:①PN=PF;DF+DN=DP;

(2)如圖2所示,當(dāng)點(diǎn)FCD邊的延長(zhǎng)線上時(shí),仍然滿足PFPN,此時(shí)點(diǎn)N位于DA邊的延長(zhǎng)線上,如圖2所示;試問(wèn)DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案