【題目】(題文)如圖,某數(shù)學(xué)活動(dòng)小組為測(cè)量學(xué)校旗桿AB的高度,從旗桿正前方2m處的點(diǎn)C出發(fā),沿斜面坡度i=1∶的斜坡CD前進(jìn)4m到達(dá)點(diǎn)D,在點(diǎn)D處安置測(cè)角儀,測(cè)得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5 m.已知A,B,C,D,E在同一平面內(nèi),AB⊥BC,AB∥DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,計(jì)算結(jié)果保留根號(hào))
【答案】(3+3.5)m.
【解析】試題延長(zhǎng)ED交BC延長(zhǎng)線于點(diǎn)F,則∠CFD=90°,Rt△CDF中求得CF、DF的長(zhǎng),作EG⊥AB,可得GE、GB的長(zhǎng),再求出AG的長(zhǎng),即可得答案.
試題解析:解:如圖,延長(zhǎng)ED交BC延長(zhǎng)線于點(diǎn)F,則∠CFD=90°,∵tan∠DCF=i==,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=,∴BF=BC+CF=+=,過(guò)點(diǎn)E作EG⊥AB于點(diǎn)G,則GE=BF=,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=tan37°,則AB=AG+BG=tan37°+3.5=,故旗桿AB的高度為()米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)完《平面直角坐標(biāo)系》和《一次函數(shù)》這兩章后,老師布置了這樣一道思考題:已知:如圖,在長(zhǎng)方形中,,,點(diǎn)為的中點(diǎn),和相交于點(diǎn).求的面積.小明同學(xué)應(yīng)用所學(xué)知識(shí),順利地解決了此題,他的思路是這樣的:以所在的直線為軸,以所在的直線為軸建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,寫出圖中一些點(diǎn)坐標(biāo).根據(jù)一次函數(shù)的知識(shí)求出點(diǎn)的坐標(biāo),從而求得的面積.請(qǐng)你按照小明的思路解決這道思考題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,寬為20米,長(zhǎng)為32米的長(zhǎng)方形地面上,修筑寬度為x米的兩條互相垂直的小路,余下的部分作為耕地,如果要在耕地上鋪上草皮,選用草皮的價(jià)格是每平米a元,
(1)求買草皮至少需要多少元?(用含a,x的式子表示)
(2)計(jì)算a=40,x=2時(shí),草皮的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)四位數(shù),記千位上和百位上的數(shù)字之和為,十位上和個(gè)位上的數(shù)字之和為,如果,那么稱這個(gè)四位數(shù)為“和平數(shù)”.
例如:1423,,,因?yàn)?/span>,所以1423是“和平數(shù)”.
(1)直接寫出:最小的“和平數(shù)”是 ,最大的“和平數(shù)”是 ;
(2)將一個(gè)“和平數(shù)”的個(gè)位上與十位上的數(shù)字交換位置,同時(shí),將百位上與千位上的數(shù)字交換位置,稱交換前后的這兩個(gè)“和平數(shù)”為一組“相關(guān)和平數(shù)”.
例如:1423與4132為一組“相關(guān)和平數(shù)”
求證:任意的一組“相關(guān)和平數(shù)”之和是1111的倍數(shù).
(3)求個(gè)位上的數(shù)字是千位上的數(shù)字的兩倍且百位上的數(shù)字與十位上的數(shù)字之和是12的倍數(shù)的所有“和平數(shù)”;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,點(diǎn)C是直徑AB延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)C作⊙O的切線,切點(diǎn)為D,連結(jié)BD.
(1)求證:∠A=∠BDC;
(2)若CM平分∠ACD,且分別交AD、BD于點(diǎn)M、N,當(dāng)DM=1時(shí),求MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P是正方形ABCD內(nèi)部一點(diǎn),且△PAB是正三角形,則∠CPD=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在⊙O中,AB= 4,AC是⊙O的直徑,AC⊥BD于F,∠A=30°.
⑴求圖中陰影部分的面積;
⑵若用陰影扇形OBD圍成一個(gè)圓錐側(cè)面,請(qǐng)求出這個(gè)圓錐底面圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的有( 。
①如果等腰三角形的底角為15°,那么腰上的高是腰長(zhǎng)的一半;
②三角形至少有一個(gè)內(nèi)角不大于60°;
③連結(jié)任意四邊形各邊中點(diǎn)形成的新四邊形是平行四邊形;
④十邊形內(nèi)角和為1800°.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)四邊形的一條對(duì)角線把四邊形分成兩個(gè)等腰三角形,我們把這條對(duì)角線叫這個(gè)四邊形的和諧線,這個(gè)四邊形叫做和諧四邊形.如菱形就是和諧四邊形.
(1)如圖1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求證:BD是梯形ABCD的和諧線;
(2)如圖2,在12×16的網(wǎng)格圖上(每個(gè)小正方形的邊長(zhǎng)為1)有一個(gè)扇形BAC,點(diǎn)A.B.C均在格點(diǎn)上,請(qǐng)?jiān)诖痤}卷給出的兩個(gè)網(wǎng)格圖上各找一個(gè)點(diǎn)D,使得以A、B、C、D為頂點(diǎn)的四邊形的兩條對(duì)角線都是和諧線,并畫出相應(yīng)的和諧四邊形;
(3)四邊形ABCD中,AB=AD=BC,∠BAD=90°,AC是四邊形ABCD的和諧線,求∠BCD的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com