精英家教網(wǎng)我們已經(jīng)知道,如果線段MN被點P分成線段MP和PN,且
MP
MN
=
PN
MP
,那么稱線段MN被點P黃金分割,點P叫做線段MN的黃金分割點,MP與MN的比叫做黃金比.通過計算可知黃金比為
5
-1
2
.若一個矩形的短邊與長邊之比等于黃金比,則稱這個矩形為黃金矩形.已知圖中正方形ABCD的邊長為1,請你以AD為短邊,用尺規(guī)作一個黃金矩形,要求保留作圖痕跡并簡要寫出作法,不要求證明.
分析:此題主要是確定矩形的長邊,根據(jù)黃金比,只需保證較長的邊等于較短邊的
5
+1
2
即可.這里可以熟練運用勾股定理進行分析.
解答:精英家教網(wǎng)解:作法:(1)作AB的中點E;
(2)連接EC;
(3)在AB的延長線上截。篍F=EC;
(4)過F點作FG⊥AF交DC的延長線于點G,
則四邊形AFGD就是所求作的黃金矩形.
點評:此題主要是根據(jù)勾股定理分析出
5
2
的長,用尺規(guī)完成即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在八年級上冊我們已經(jīng)知道三角形的中位線具有如下性質(zhì):
三角形的中位線平行于第三邊,并且等于它的一半.
如圖所示,已知△ABC和下列四種說法:
①D是AB中點;②E是AC中點;③DE=
12
BC;④DE∥BC.
請你以其中的兩種說法為條件(①和②不能同時作為條件),其余兩種說法為結(jié)論,構造一個命題;并判定你所構造的命題是否正確.如果正確請說明理由;如果不正確,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)我們已經(jīng)知道:在△ABC中,如果AB=AC,則∠B=∠C.下面我們繼續(xù)
研究:如圖①,在△ABC中,如果AB>AC,則∠B與∠C的大小關系如何?
為此,我們把AC沿∠BAC的平分線翻折,因為AB>AC,所以點C落在AB邊的點D處,如圖②所示,然后把紙展平,連接DE.接下來,你能推出∠B與∠C的大小關系了嗎?試寫出說理過程.
(2)如圖③,在△ABC中,AE是角平分線,且∠C=2∠B.
求證:AB=AC+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在八年級上冊我們已經(jīng)知道三角形的中位線具有如下性質(zhì):
三角形的中位線平行于第三邊,并且等于它的一半.
如圖所示,已知△ABC和下列四種說法:
①D是AB中點;②E是AC中點;③DE=數(shù)學公式BC;④DE∥BC.
請你以其中的兩種說法為條件(①和②不能同時作為條件),其余兩種說法為結(jié)論,構造一個命題;并判定你所構造的命題是否正確.如果正確請說明理由;如果不正確,請舉出反例.

查看答案和解析>>

同步練習冊答案