已知拋物線與x軸交于A.B兩點,與y軸交于C點,拋物線的頂點為D點,點A的坐標(biāo)為(﹣1,0).

(1)求D點的坐標(biāo);
(2)如圖1,連接AC,BD并延長交于點E,求∠E的度數(shù);
(3)如圖2,已知點P(﹣4,0),點Q在x軸下方的拋物線上,直線PQ交線段AC于點M,當(dāng)∠PMA=∠E時,求點Q的坐標(biāo).
(1)頂點D的坐標(biāo)為(1,﹣4)。
(2)∠E=45°
(3)點Q的坐標(biāo)為(2,﹣3)或(,)。

分析:(1)將點A的坐標(biāo)代入到拋物線的解析式求得c值,然后配方后即可確定頂點D的坐標(biāo)。
(2)連接CD、CB,過點D作DF⊥y軸于點F,首先求得點C的坐標(biāo),然后證得△DCB∽△AOC得到∠CBD=∠OCA,根據(jù)∠ACB=∠CBD+∠E=∠OCA+∠OCB,得到∠E=∠OCB=45°。
(3)設(shè)直線PQ交y軸于N點,交BD于H點,作DG⊥x軸于G點,增大△DGB∽△PON后利用相似三角形的性質(zhì)求得ON的長,從而求得點N的坐標(biāo),進(jìn)而求得直線PQ的解析式,設(shè)Q(m,n),根據(jù)點Q在直線PQ和拋物線上,得到,求得m、n的值后即可求得點Q的坐標(biāo)。
解:(1)把x=﹣1,y=0代入得:1+2+c=0,∴c=﹣3。
。
∴頂點D的坐標(biāo)為(1,﹣4)。
(2)如圖1,連接CD、CB,過點D作DF⊥y軸于點F,

解得x=﹣1或x=3,∴B(3,0)。
當(dāng)x=0時,,∴C(0,﹣3)。
∴OB=OC=3。
∵∠BOC=90°,∴∠OCB=45°,BC=。
又∵DF=CF=1,∠CFD=90°,
∴∠FCD=45°,CD=。
∴∠BCD=180°﹣∠OCB﹣∠FCD=90°
∴∠BCD=∠COA。
又∵,∴△DCB∽△AOC。
又∵∠ACB=∠CBD+∠E=∠OCA+∠OCB,∴∠E=∠OCB=45°。
(3)如圖2,設(shè)直線PQ交y軸于N點,交BD于H點,作DG⊥x軸于G點,

∵∠PMA=45°,∴∠EMH=45°!唷螹HE=90°。
∴∠PHB=90°。∴∠DBG+∠OPN=90°。
又∵∠ONP+∠OPN=90°,∴∠DBG=∠ONP。
又∵∠DGB=∠PON=90°,∴△DGB=∠PON=90°。
∴△DGB∽△PON。
,即,解得ON=2。
∴N(0,﹣2)。
設(shè)直線PQ的解析式為y=kx+b,
,解得:
∴直線PQ的解析式為。
設(shè)Q(m,n)且n<0,∴。
又∵Q(m,n)在上,∴。
,解得:m=2或m=。
∴n=﹣3或n=
∴點Q的坐標(biāo)為(2,﹣3)或(,)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點O,頂點為C

(1)求拋物線的函數(shù)解析式.
(2)設(shè)點D在拋物線上,點E在拋物線的對稱軸上,且以AO為邊的四邊形AODE是平行四邊形,求點D的坐標(biāo).
(3)P是拋物線上第一象限內(nèi)的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P,M,A為頂點的三角形與△BOC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標(biāo);
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某校為培育青少年科技創(chuàng)新能力,舉辦了動漫制作活動,小明設(shè)計了點做圓周運動的一個雛形,如圖所示,甲、乙兩點分別從直徑的兩端點A、B以順時針、逆時針的方向同時沿圓周運動,甲運動的路程l(cm)與時間t(s)滿足關(guān)系:(t≥0),乙以4cm/s的速度勻速運動,半圓的長度為21cm.

(1)甲運動4s后的路程是多少?
(2)甲、乙從開始運動到第一次相遇時,它們運動了多少時間?
(3)甲、乙從開始運動到第二次相遇時,它們運動了多少時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點A和點B,與y軸交于點C,已知點B的坐標(biāo)為(3,0).

(1)求a的值和拋物線的頂點坐標(biāo);
(2)分別連接AC、BC.在x軸下方的拋物線上求一點M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對稱軸上的一個動點,d=|AN﹣CN|.探究:是否存在一點N,使d的值最大?若存在,請直接寫出點N的坐標(biāo)和d的最大值;若不存在,請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)(a,b是常數(shù))的圖象與x軸交于點A(﹣3,0)和點B(1,0),與y軸交于點C.動直線y=t(t為常數(shù))與拋物線交于不同的兩點P、Q.

(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三角形ABC是以BC為底邊的等腰三角形,點A、C分別是一次函數(shù)的圖象與y軸的交點,點B在二次函數(shù)的圖象上,且該二次函數(shù)圖象上存在一點D使四邊形ABCD能構(gòu)成平行四邊形.

(1)試求b,c的值,并寫出該二次函數(shù)表達(dá)式;
(2)動點P從A到D,同時動點Q從C到A都以每秒1個單位的速度運動,問:
①當(dāng)P運動到何處時,有PQ⊥AC?
②當(dāng)P運動到何處時,四邊形PDCQ的面積最?此時四邊形PDCQ的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過原點和點(-2,0),則2a-3b   0.(>、<或=)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論正確的是
A.a(chǎn)<0
B.b2﹣4ac<0
C.當(dāng)﹣1<x<3時,y>0
D.

查看答案和解析>>

同步練習(xí)冊答案