如圖,點(diǎn)A是雙曲線y=
k
x
與直線y=-x-(k+1)在第二象限內(nèi)的交點(diǎn),AB⊥x軸于精英家教網(wǎng)B,且S△ABO=
5
2

(1)求這兩個(gè)函數(shù)的解析式;
(2)求△AOC的面積.
分析:(1)欲求這兩個(gè)函數(shù)的解析式,關(guān)鍵求k值.根據(jù)反比例函數(shù)性質(zhì),k絕對(duì)值為5且為負(fù)數(shù),由此即可求出k;
(2)交點(diǎn)A、C的坐標(biāo)是方程組
y=-x+4
y=-
5
x
的解,解之即得;從圖形上可看出△AOC的面積為兩小三角形面積之和,根據(jù)三角形的面積公式即可求出.
解答:解:(1)設(shè)A點(diǎn)坐標(biāo)為(x,y),且x<0,y>0,
則S△ABO=
1
2
•|BO|•|BA|=
1
2
•(-x)•y=
5
2
,
∴xy=-5,
又∵y=
k
x
,
即xy=k,
∴k=-5,
∴所求的兩個(gè)函數(shù)的解析式分別為y=-
5
x
,y=-x+4;

(2)由y=-x+4,
令y=0,得x=4.
∴直線y=-x+4與x軸的交點(diǎn)D的坐標(biāo)為(4,0),
A、C兩點(diǎn)坐標(biāo)滿足
y=-x+4
y=-
5
x
,解得:
x1=5
y1=-1
,
x2=-1
y2=5

∴交點(diǎn)A為(-1,5),C為(5,-1),
∴S△AOC=S△ODA+S△ODC=
1
2
|OD|•(|y1|+|y2|)=
1
2
×4×(5+1)=12.
點(diǎn)評(píng):此題首先利用待定系數(shù)法確定函數(shù)解析式,然后利用解方程組來(lái)確定圖象的交點(diǎn)坐標(biāo),及利用坐標(biāo)求出線段和圖形的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A是雙曲線y=
8x
(x>0)上的一點(diǎn),P為x軸正半軸上的一點(diǎn),且點(diǎn)P的坐標(biāo)為(4,0),將A點(diǎn)繞P點(diǎn)順時(shí)針旋轉(zhuǎn)90°,恰好落在此雙曲線上的另一點(diǎn)B,則B點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蕭山區(qū)模擬)如圖,點(diǎn)P是雙曲線y=
4
3
x
(x>0)上動(dòng)點(diǎn),在y軸上取點(diǎn)Q,使得以P、Q、O 為頂點(diǎn)的三角形是含有30°角的直角三角形,則符合條件的點(diǎn)Q的坐標(biāo)是
(0,2
3
)、(0,2)、(0,
8
3
3
)、(0,8)
(0,2
3
)、(0,2)、(0,
8
3
3
)、(0,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P是雙曲線y=
4
x
(x>0)
上一個(gè)動(dòng)點(diǎn),點(diǎn)Q為線段OP的中點(diǎn),則⊙Q的面積不可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通二模)如圖,點(diǎn)A是雙曲線y=
4
x
在第一象限上的一動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)的解析式為
y=-
4
x
y=-
4
x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)M是雙曲線y=
2
x
上一點(diǎn),ME⊥y軸,MF⊥x軸,直線y=-x+m交坐標(biāo)軸于A、B兩點(diǎn),交ME于C點(diǎn),交MF于D點(diǎn),則AD•BC=
2
2
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案