(2010•江津區(qū))如圖,已知點(diǎn)B、E、C、F在同一直線上,AB=DE,∠A=∠D,AC∥DF.
求證:(1)△ABC≌△DEF;
(2)BE=CF.

【答案】分析:(1)欲證兩三角形全等,已經(jīng)有兩個(gè)條件,只要再有一個(gè)條件就可以了,而AC∥DF可以得出∠ACB=∠F,條件找到,全等可證.
(2)根據(jù)全等三角形對應(yīng)邊相等可得BC=EF,都減去一段EC即可得證.
解答:證明:(1)∵AC∥DF,
∴∠ACB=∠F,
在△ABC和△DEF中,,
∴△ABC≌△DEF(AAS);

(2)∵△ABC≌△DEF,
∴BC=EF,
∴BC-CE=EF-CE,
即BE=CF.
點(diǎn)評:本題主要考查三角形全等的判定和全等三角形的對應(yīng)邊相等;要牢固掌握并靈活運(yùn)用這些知識(shí).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點(diǎn)A(-1,0),B(1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)過點(diǎn)B作BD∥CA拋物線交于點(diǎn)D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,過M作MN⊥x軸于點(diǎn)N,使以A、M、N為頂點(diǎn)的三角形與△BCD相似?若存在,則求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點(diǎn)A(-1,0),B(1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)過點(diǎn)B作BD∥CA拋物線交于點(diǎn)D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,過M作MN⊥x軸于點(diǎn)N,使以A、M、N為頂點(diǎn)的三角形與△BCD相似?若存在,則求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點(diǎn)A(-1,0),B(1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)過點(diǎn)B作BD∥CA拋物線交于點(diǎn)D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,過M作MN⊥x軸于點(diǎn)N,使以A、M、N為頂點(diǎn)的三角形與△BCD相似?若存在,則求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二元一次方程組》(03)(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點(diǎn)A(-1,0),B(1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)過點(diǎn)B作BD∥CA拋物線交于點(diǎn)D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,過M作MN⊥x軸于點(diǎn)N,使以A、M、N為頂點(diǎn)的三角形與△BCD相似?若存在,則求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年重慶市江津區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•江津區(qū))如圖,拋物線y=ax2+bx+1與x軸交于兩點(diǎn)A(-1,0),B(1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)過點(diǎn)B作BD∥CA拋物線交于點(diǎn)D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,過M作MN⊥x軸于點(diǎn)N,使以A、M、N為頂點(diǎn)的三角形與△BCD相似?若存在,則求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案