精英家教網(wǎng)已知如圖所示,A,B,C是⊙O上三點,∠AOB=120°,C是
AB
的中點,試判斷四邊形OACB形狀,并說明理由.
分析:連接OC,根據(jù)等邊三角形的判定及圓周角定理進行分析即可.
解答:精英家教網(wǎng)解:AOBC是菱形.
證明:連OC
∵C是
AB
的中點
∴∠AOC=∠BOC=
1
2
×120°=60°
∵CO=BO(⊙O的半徑),
∴△OBC是等邊三角形
∴OB=BC
同理△OCA是等邊三角形
∴OA=AC
又∵OA=OB
∴OA=AC=BC=BO
∴AOBC是菱形.
點評:本題利用了等邊三角形的判定和性質,圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、定義:弦切角:頂點在圓上,一邊與圓相交,另一邊和圓相切的角叫弦切角.
問題情景:已知如圖所示,直線AB是⊙O的切線,切點為C,CD為⊙O的一條弦,∠P為弧CD所對的圓周角.
(1)猜想:弦切角∠DCB與∠P之間的關系.試用轉化的的思想:即連接CO并延長交⊙O于點E,連接DE,來論證你的猜想.
(2)用自己的語言敘述你猜想得到的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

34、已知如圖所示,△ABC與△A′B′C′關于原點O對稱,點A(-2,3),B(-4,2),C′(1,-1),則A′點的坐標為
(2,-3)
,B′點的坐標為
(4,-2)
,C點的坐標為
(-1,1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、已知如圖所示,AD是△ABC的角平分線,DE∥AC交AB于E,DF∥AB交AC于F,四邊形AEDF是菱形嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

30、已知如圖所示,∠1=∠2,∠3=∠E,∠4=∠5,試判斷AD與BC的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖所示,∠B=42°,∠2=62°,∠1=∠C+14°,問AD與BC是否平行?試說明理由.

查看答案和解析>>

同步練習冊答案