【題目】已知:如圖,△ABC.
(1)分別畫出與△ABC關(guān)于x軸、y軸對稱的圖形△A1B1C1和△A2B2C2;
(2)寫出△A1B1C1和△A2B2C2各頂點(diǎn)的坐標(biāo);
(3)直接寫出△ABC的面積,
【答案】
(1)解:如圖所示;
(2)解:A1(0,2), B1(2,4) , C1(4,1);A2(0,-2), B2(-2,-4) , C2(-4,-1)
(3)解:
【解析】(1)根據(jù)關(guān)于x軸對稱點(diǎn)的坐標(biāo)特點(diǎn)是:橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),關(guān)于y軸對稱點(diǎn)的坐標(biāo)特點(diǎn)是:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變,按要求畫出圖形即可。
(2)根據(jù)根據(jù)關(guān)于x軸對稱點(diǎn)的坐標(biāo)特點(diǎn)是:橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),關(guān)于y軸對稱點(diǎn)的坐標(biāo)特點(diǎn)是:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變,寫出各對稱點(diǎn)的坐標(biāo)即可。
(3)觀察圖形,將△ABC的面積轉(zhuǎn)化為矩形的面積-三個直角三角形的面積之和,計(jì)算即可得出結(jié)果。
【考點(diǎn)精析】本題主要考查了三角形的面積和作軸對稱圖形的相關(guān)知識點(diǎn),需要掌握三角形的面積=1/2×底×高;畫對稱軸圖形的方法:①標(biāo)出關(guān)鍵點(diǎn)②數(shù)方格,標(biāo)出對稱點(diǎn)③依次連線才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CE⊥AB,BF⊥AC,垂足分別為E,F,BF交CE于點(diǎn)D,BD=CD.
(1)求證:點(diǎn)D在∠BAC的平分線上.
(2)若將條件“BD=CD”與(1)中結(jié)論“點(diǎn)D在∠BAC的平分線上”互換,成立嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,點(diǎn)M、N分別在AB、BC上,將BMN沿MN翻折,得FMN,若MF∥AD,F(xiàn)N∥DC,則∠D的度數(shù)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(x-2)(x-3)=a有實(shí)數(shù)根x1、x2,且x1≠x2,有下列結(jié)論:①x1=2,x2=3、赼>- ③二次函數(shù) 的圖象與x軸交點(diǎn)坐標(biāo)為(2,0),(3,0),其中正確的結(jié)論的個數(shù)是( 。
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一棵樹高h(米)與年數(shù)n(年)之間的關(guān)系如下表:
n(年) | 2 | 4 | 6 | 8 | … |
h(米) | 2.6 | 3.2 | 3.8 | 4.4 | … |
寫出用n表示h的關(guān)系式:__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+ax+a-2=0
(1)若該方程有一個實(shí)數(shù)根為1,求a的值及方程的另一實(shí)根.
(2)求證:不論a取何實(shí)數(shù),該方程都有兩個不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(2,﹣3)關(guān)于x軸的對稱點(diǎn)是( )
A. (﹣2,3) B. (2,3) C. (﹣2,3) D. (2,﹣3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com