等式的性質(zhì)

(1)等式兩邊加(或減)________,結(jié)果仍相等.

如果ab,那么a±c________

(2)等式兩邊乘同一個數(shù),或除以________,結(jié)果仍相等.

如果ab,那么ac________;如果ab(c0),那么________

答案:相同的一個數(shù)或整式;b±c;一個不等于0的數(shù);bc;b\c.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

29、如圖,已知點(diǎn)D、E為△ABC的邊BC上兩點(diǎn).AD=AE,BD=CE,為了判斷∠B與∠C的大小關(guān)系,請你填空完成下面的推理過程,并在空白括號內(nèi)注明推理的依據(jù).
解:過點(diǎn)A作AH⊥BC,垂足為H.
∵在△ADE中,AD=AE(已知)
AH⊥BC(所作)
∴DH=EH(等腰三角形底邊上的高也是底邊上的中線)
又∵BD=CE(已知)
∴BD+DH=CE+EH(等式的性質(zhì))
即:BH=
CH

又∵
AH⊥BC
(所作)
∴AH為線段
BC
的垂直平分線
∴AB=AC(線段垂直平分線上的點(diǎn)到線段兩個端點(diǎn)的距離相等)
∠B=∠C
(等邊對等角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)B、E、C、F在同一直線上,且AB=DE,AC=DF,BE=CF,請將下面說明∠A=∠D的過程和理由補(bǔ)充完整.
解:∵BE=CF (
已知
已知
),
∴BE+EC=CF+EC (
等式的性質(zhì)
等式的性質(zhì)
) 即BC=EF,
在△ABC和△DEF中,
AB=
DE
DE

AC
AC
=DF
BC=EF,
∴△ABC≌△DEF
SSS
SSS
,
∴∠A=∠D(
全等三角形的對應(yīng)角相等
全等三角形的對應(yīng)角相等
 ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(閱讀理解題)如圖所示,CE⊥AB于點(diǎn)E,BD⊥AC于點(diǎn)D,BD,CE交于點(diǎn)O,且AO平分∠BAC.
(1)圖中有多少對全等三角形?請一一列舉出來(不必說明理由);
(2)小明說:欲證BE=CD,可先證明△AOE≌△AOD得到AE=AD,再證明△ADB≌△AEC得到AB=AC,然后利用等式的性質(zhì)得到BE=CD,請問他的說法正確嗎?如果正確,請按照他的說法寫出推導(dǎo)過程,如果不正確,請說明理由;
(3)要得到BE=CD,你還有其他思路嗎?若有,請寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先填寫完成第(1)小題中的空缺部分(數(shù)學(xué)表達(dá)式或理由),再按要求解答第(2)小題.
如圖,點(diǎn)E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.
(1)求證:AB=DC;
(2)請你連接AE、DF.問AE和DF相等嗎?為什么?
證明:
(1)∵BE=CF(已知),
∴BE+EF=CF+EF(
等式的性質(zhì)
等式的性質(zhì)
),
即BF=CE.
在△ABF和△DCE中,
∠A=(    )(   )
(   )(    )
(     )(    )

∴△ABF≌△DCE
(AAS)
(AAS)
,
∴AB=DC
(全等三角形的對應(yīng)邊相等)
(全等三角形的對應(yīng)邊相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

看圖填空:
已知:如圖,BC∥EF,AD=BE,BC=EF,試說明 AC=DF
解:∵AD=BE
∴AD+DB=BE+
DB
DB
(等式的性質(zhì))
即:AB=
DE
DE

∵BC∥EF
∴∠ABC=∠
DEF
DEF
兩直線平行,同位角相等
兩直線平行,同位角相等

在△ABC和△DEF中
BC=EF (已知)
(     )(已證)
AB=DE (已證)

∴△ABC≌△DEF(
SAS
SAS

∴AC=DF (
全等三角形的對應(yīng)邊相等
全等三角形的對應(yīng)邊相等
).

查看答案和解析>>

同步練習(xí)冊答案