11.把命題“鄰補角是互補的角”寫成“如果…那么…”的形式是:如果兩個角是鄰補角,那么它們(這兩個角)互補.

分析 分清題目的已知與結(jié)論,即可解答.

解答 解:把命題“鄰補角是互補的角”改寫為“如果…那么…”的形式是:如果兩個角是鄰補角,那么它們(這兩個角)互補.
故答案為:如果兩個角是鄰補角,那么它們(這兩個角)互補.

點評 本題主要考查了命題的定義,正確理解定義是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,拋物線y=-$\frac{1}{2}$(x+m)(x-4)(m>0)交x軸于點A、B(A左B右),交y軸于點C,過點B的直線y=$\frac{1}{2}$x+b交y軸于點D.

(1)求點D的坐標(biāo);
(2)把直線BD沿x軸翻折,交拋物線第二象限圖象上一點E,過點E作x軸垂線,垂足為點F,求AF的長;
(3)在(2)的條件下,點P為拋物線上一點,若四邊形BDEP為平行四邊形,求m的值及點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.如圖,點O是圓形紙片的圓心,將這個圓形紙片按下列順序折疊,使$\widehat{AB}$和$\widehat{AC}$都經(jīng)過圓心O,則陰影部分的面積是⊙O面積的$\frac{1}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.李老師對她所教學(xué)生的學(xué)習(xí)興趣進行了一次抽樣調(diào)查,她把學(xué)生的學(xué)習(xí)興趣分為三個層次:很感興趣;較感興趣和不感興趣;并將調(diào)查結(jié)果繪制成了圖①和圖②的統(tǒng)計圖(不完整).請你根據(jù)圖中提供的信息,幫助李老師解答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了200名學(xué)生;
(2)補全條形統(tǒng)計圖,并在扇形統(tǒng)計圖中填上百分?jǐn)?shù);
(3)求圖②中表示“不感興趣”部分的扇形所對的圓心角;
(4)根據(jù)抽樣調(diào)查的結(jié)果,請你估計李老師所在的學(xué)校800名學(xué)生中大約有多少名學(xué)生對學(xué)習(xí)感興趣(包括“很感興趣”和“較感興趣”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.霧霾天氣是一種大氣污染狀態(tài),霧霾是對大氣中各種懸浮顆粒物含量超標(biāo)的籠統(tǒng)表述,尤其是PM2.5(空氣動力學(xué)當(dāng)量直徑小于等于2.5微米的顆粒物)被認(rèn)為是造成霧霾天氣的“元兇”.已知1微米等于1米的一百萬分之一,那么2.5微米用科學(xué)記數(shù)法可表示為( 。
A.0.25×10-7B.2.5×10-6C.25×10-5D.2.5×10-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在邊長為2的正方形ABCD中,點M是BC邊上的任一點,連接AM并將線段AM繞M順時針旋轉(zhuǎn)90°得到線段MN,在CD邊上取點P使CP=BM,連接NP,BP.
(1)判斷四邊形BMNP的形狀,并加以證明;
(2)線段MN與CD交于點Q,連接AQ,若△MCQ∽△AMQ,求PN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在直角坐標(biāo)系中,矩形OABC的頂點O是坐標(biāo)原點,A,C分別在坐標(biāo)軸上,點B的坐標(biāo)為(4,2),M,N分別是AB,BC上的點,反比例函數(shù)y=$\frac{k}{x}$的圖象經(jīng)過點M,N.
(1)請用含k的式子表示出點M、N的坐標(biāo);
(2)若直線MN的解析式為y=-$\frac{1}{2}$x+3,求反比例函數(shù)的解析式;
(3)在(2)的條件下,若點P在x軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系中,△ABC頂點坐標(biāo)分別為:A(2,5)、B(-2,3)、C(0,2).線段DE的端點坐標(biāo)為D(2,-3),E(6,-1).
(1)線段AB先向右平移4個單位,再向下平移6個單位與線段ED重合;
(2)將△ABC繞點P旋轉(zhuǎn)180°后得到的△DEF,使AB的對應(yīng)邊為DE,直接寫出點P的坐標(biāo),并畫出△DEF;
(3)求點C在旋轉(zhuǎn)過程中所經(jīng)過的路徑l的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.張明從家騎摩托車到工廠上班需30min,如果行駛速度增加10km/h,那么不到20min可到達,他原來行駛的速度xkm/h最大是多少?列不等式為$\frac{1}{3}$(x+10)>$\frac{1}{2}$x.

查看答案和解析>>

同步練習(xí)冊答案