【題目】如圖,△ABC的內(nèi)角∠ABC和外角∠ACD的平分線相交于點(diǎn)E,BE交AC于點(diǎn)F,過(guò)點(diǎn)E作EG∥BD交AB于點(diǎn)G,交AC于點(diǎn)H,連接AE,有以下結(jié)論:
①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正確的結(jié)論有_____(將所有正確答案的序號(hào)填寫在橫線上).
【答案】①③④.
【解析】
①根據(jù)角平分線的定義得到∠EBC=∠ABC,∠DCE=∠ACD,根據(jù)外角的性質(zhì)即可得到結(jié)論;
②根據(jù)相似三角形的判定定理得到兩個(gè)三角形相似,不能得出全等;
③由BG=GE,CH=EH,于是得到BG-CH=GE-EH=GH.即可得到結(jié)論;
④由于E是兩條角平分線的交點(diǎn),根據(jù)角平分線的性質(zhì)可得出點(diǎn)E到BA、AC、BC和距離相等,從而得出AE為∠BAC外角平分線這個(gè)重要結(jié)論,再利用三角形內(nèi)角和性質(zhì)與外角性質(zhì)進(jìn)行角度的推導(dǎo)即可輕松得出結(jié)論.
①BE平分∠ABC,
∴∠EBC=∠ABC,
∵CE平分∠ACD,
∴∠DCE=∠ACD,
∵∠ACD=∠BAC+∠ABC,∠DCE=∠CBE+∠BEC,
∴∠EBC+∠BEC= (∠BAC+∠ABC)=∠EBC+∠BAC,
∴∠BEC=∠BAC,故①正確;
∵②△HEF與△CBF只有兩個(gè)角是相等的,能得出相似,但不含相等的邊,所以不能得出全等的結(jié)論,故②錯(cuò)誤;
③BE平分∠ABC,
∴∠ABE=∠CBE,
∵GE∥BC,
∴∠CBE=∠GEB,
∴∠ABE=∠GEB,
∴BG=GE,
同理CH=HE,
∴BGCH=GEEH=GH,
∴BG=CH+GH,
故③正確;
④過(guò)點(diǎn)E作EN⊥AC于N,ED⊥BC于D,EM⊥BA于M,如圖,
∵BE平分∠ABC,
∴EM=ED,
∵CE平分∠ACD,
∴EN=ED,
∴EN=EM,
∴AE平分∠CAM,
設(shè)∠ACE=∠DCE=x,∠ABE=∠CBE=y,∠MAE=∠CAE=z,如圖,
則∠BAC=1802z,∠ACB=1802x,
∵∠ABC+∠ACB+∠BAC=180,
∴2y+1802z+1802x=180,
∴x+z=y+90,
∵z=y+∠AEB,
∴x+y+∠AEB=y+90,
∴x+∠AEB=90,
即∠ACE+∠AEB=90,
故④正確.
故答案為:①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村計(jì)劃對(duì)總長(zhǎng)為1800m的道路進(jìn)行改造,安排甲、乙兩個(gè)工程隊(duì)完成已知甲隊(duì)每天能完成的道路長(zhǎng)度是乙隊(duì)每天能完成的2倍,并且在獨(dú)立完成長(zhǎng)為400m的道路時(shí),甲隊(duì)比乙隊(duì)少用4天.
求甲、乙兩工程隊(duì)每天能完成道路的長(zhǎng)度分別是多少m?
若村委每天需付給甲隊(duì)的道路改造費(fèi)用為萬(wàn)元,乙隊(duì)為萬(wàn)元,要使這次的道路改造費(fèi)用不超過(guò)8萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=90°,CE⊥BD于E,AB=EC
(1)求證:△ABD≌△ECB;
(2)若∠EDC=65°,求∠ECB的度數(shù);
(3)若AD=3,AB=4,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算或解方程
(1)﹣14+(﹣5)2×(﹣)+|0.8﹣1|
(2)﹣1.53×0.75+1.53×+×1.53
(3)
(4).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:=(a≠0),即a的負(fù)P次冪等于a的p次冪的倒數(shù).例:=
(1)計(jì)算:=__;=__;
(2)如果=,那么p=__;如果=,那么a=__;
(3)如果=,且a、p為整數(shù),求滿足條件的a、p的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD沿EF折疊,點(diǎn)C落在A處,點(diǎn)D落在D′處.若AB=3,BC=9,則折痕EF的長(zhǎng)為( )
A.
B.4
C.5
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一個(gè)軸對(duì)稱圖形,A(3,-2),B(3,﹣6)兩點(diǎn)在此圖形上且互為對(duì)稱點(diǎn),若此圖形上有一個(gè)點(diǎn)C(﹣2,+1).
(1)求點(diǎn)C的對(duì)稱點(diǎn)的坐標(biāo).
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某高樓頂部有一信號(hào)發(fā)射塔,在矩形建筑物ABCD的A、C兩點(diǎn)測(cè)得該塔頂端F的仰角分別為45°和60°,矩形建筑物寬度AD=20m,高度DC=30m則信號(hào)發(fā)射塔頂端到地面的高度(即FG的長(zhǎng))為( )
A.(35 +55)m
B.(25 +45)m
C.(25 +75)m
D.(50+20 )m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB的垂直平分線DE交AC于D,垂足為E,若∠A=30°,CD=3.
(1)求∠BDC的度數(shù).
(2)求AC的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com