【題目】如圖,將ABC紙片沿DE折疊,使點(diǎn)A落在點(diǎn)A′處,且A′B平分∠ABC,A′C平分∠ACB,若∠BA′C=110°,則∠1+2=_____

【答案】80°.

【解析】

連接AA′.首先求出∠BAC,再證明∠1+2=2BAC即可解決問題.

連接AA′.

A'B平分∠ABC,A'C平分∠ACB,BA'C=110°,

∴∠A′BC+A′CB=70°,

∴∠ABC+ACB=140°,

∴∠BAC=180°﹣140°=40°,

∵∠1=DAA′+DA′A,2=EAA′+EA′A,

∵∠DAA′=DA′A,EAA′=EA′A,

∴∠1+2=2(DAA′+EAA′)=2BAC=80°,

故答案為:80°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,AD垂直于過點(diǎn)C的切線,垂足為D,CE垂直AB,垂足為E.延長(zhǎng)DA交⊙O于點(diǎn)F,連接FC,F(xiàn)CAB相交于點(diǎn)G,連接OC.

(1)求證:CD=CE;

(2)若AE=GE,求證:△CEO是等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(-1,5),B(-2,0),C(-4,3).

(1)請(qǐng)畫出ABC關(guān)于y軸對(duì)稱的AB,C,,并寫出點(diǎn)C的坐標(biāo);

(2)ABC的面積;

(3)y軸上畫出點(diǎn)P的位置,使線段PA+PB的值最小,并直接寫出PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,BC⊙O的直徑,AE⊙O的切線,過點(diǎn)BBD⊥AED

1)求證:∠DBA=∠ABC;

2)如果BD=1tan∠BAD=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩名同學(xué)在同一個(gè)學(xué)校上學(xué),B同學(xué)上學(xué)的路上經(jīng)過A同學(xué)家。A同學(xué)步行,B同學(xué)騎自行車,某天,A,B兩名同學(xué)同時(shí)從家出發(fā)到學(xué)校,如圖,A表示A同學(xué)離B同學(xué)家的路程A(m)與行走時(shí)間(min)之間的函數(shù)關(guān)系圖象,B表示B同學(xué)離家的路程B(m)與行走時(shí)間(min)之間的函數(shù)關(guān)系圖象.

(1)A,B兩名同學(xué)的家相距________m.

(2)B同學(xué)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,修理自行車所用的時(shí)間是 _____min.

(3)B同學(xué)出發(fā)后______min與A同學(xué)相遇.

(4)求出A同學(xué)離B同學(xué)家的路程A與時(shí)間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓O的直徑,以AO為直徑作半圓M,C為OB的中點(diǎn),D在半圓M上,且CD⊥MD,延長(zhǎng)AD交半圓O于點(diǎn)E,且AB=4,則圓中陰影部分的面積為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在已知的ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MNAB于點(diǎn)D,連接CD.CD=AC,A=50°,則∠ACB的度數(shù)為(  )

A. 90°B. 95°C. 100°D. 105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一些完全相同的正三角形按如圖所示規(guī)律擺放,第一個(gè)圖形有1個(gè)正三角形,第二個(gè)圖形有5個(gè)正三角形,第三個(gè)圖形有12個(gè)正三角形,,按此規(guī)律排列下去,第六個(gè)圖形中正三角形的個(gè)數(shù)是( 。

A. 35 B. 41 C. 45 D. 51

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,若分得的兩個(gè)小三角形中一個(gè)三角形為等腰三角形,另一個(gè)三角形的三個(gè)內(nèi)角與原來三角形的三個(gè)內(nèi)角分別相等,則稱這條線段叫做這個(gè)三角形的等角分割線

例如,等腰直角三角形斜邊上的高就是這個(gè)等腰直角三角形的一條等角分割線

(1)如圖1,在△ABC中,D是邊BC上一點(diǎn),若∠B=30°∠BAD=∠C=40°,求證: AD△ABC等角分割線

(2)如圖2,△ABC中,∠C=90°,∠B=30°;

畫出△ABC等角分割線,寫出畫法并說明理由;

BC=3,求出中畫出的等角分割線的長(zhǎng)度.

(3)△ABC中,∠A=24°,若△ABC存在等角分割線”CD,直接寫出所有符合要求的∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案