如圖,已知拋物線與坐標(biāo)軸交于三點,點的橫坐標(biāo)為,過點的直線與軸交于點,點是線段上的一個動點,于點.若,且.
(1)求的值
(2)求出點的坐標(biāo)(其中用含的式子表示):
(3)依點的變化,是否存在的值,使為等腰三角形?
(1)b=,c=3;
(2)B(4,0),P(4﹣4t,3t),Q(4t,0);
(3)當(dāng)t=或或時,△PQB為等腰三角形.
【解析】
試題分析:(1)將A、C的坐標(biāo)代入拋物線中即可求得待定系數(shù)的值.
(2)根據(jù)拋物線的解析式可求得B點的坐標(biāo),即可求出OB,BC的長,在直角三角形BPH中,可根據(jù)BP的長和∠CBO三角函數(shù)求出PH,BH的長,進(jìn)而可求出OH的長,也就求出了P點的坐標(biāo).Q點的坐標(biāo),可直接由直線CQ的解析式求得.
(3)本題要分情況討論:
①PQ=PB,此時BH=QH=BQ,在(2)中已經(jīng)求得了BH的長,BQ的長可根據(jù)B、Q點的坐標(biāo)求得,據(jù)此可求出t的值.
②PB=BQ,那么BQ=BP=5t,由此可求出t的值.
③PQ=BQ,已經(jīng)求得了BH的長,可表示出QH的長,然后在直角三角形PQH中,用BQ的表達(dá)式表示出PQ,即可用勾股定理求出t的值.
試題解析:(1)已知拋物線過A(﹣1,0)、C(0,3),則有:
,
解得,
因此b=,c=3;
(2)令拋物線的解析式中y=0,則有﹣x2+ x+3=0,
解得x=﹣1,x=4;
∴B(4,0),OB=4,
因此BC=5,
在直角三角形OBC中,OB=4,OC=3,BC=5,
∴sin∠CBO=,cos∠CBO=,
在直角三角形BHP中,BP=5t,
因此PH=3t,BH=4t;
∴OH=OB﹣BH=4﹣4t,
因此P(4﹣4t,3t).
令直線的解析式中y=0,則有0=﹣x+3,x=4t,
∴Q(4t,0);
(3)存在t的值,有以下三種情況
①如圖1,當(dāng)PQ=PB時,
∵PH⊥OB,則QH=HB,
∴4﹣4t﹣4t=4t,
∴t=,
②當(dāng)PB=QB得4﹣4t=5t,
∴t=,
③當(dāng)PQ=QB時,在Rt△PHQ中有QH2+PH2=PQ2,
∴(8t﹣4)2+(3t)2=(4﹣4t)2,
∴57t2﹣32t=0,
∴t=,t=0(舍去),
又∵0<t<1,
∴當(dāng)t=或或時,△PQB為等腰三角形.
考點:二次函數(shù)綜合題.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線y=ax2+bx(a>0)與反比例函數(shù)的圖象相交于點A,B.已知點A的坐
為(1,4),點B(t,q)在第三象限內(nèi),且△AOB的面積為3(O為坐標(biāo)原點).
(1)求反比例函數(shù)的解析式;
(2)用含t的代數(shù)式表示直線AB的解析式;
(3)求拋物線的解析式;
(4)過拋物線上點A作直線AC∥x軸,交拋物線于另一點C,把△AOB繞點O順時針旋轉(zhuǎn)90°,請在圖②中畫出旋轉(zhuǎn)后的三角形,并直接寫出所有滿足△EOC∽△AOB的點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(山東東營卷)數(shù)學(xué)(解析版) 題型:解答題
已知拋物線經(jīng)過A(2,0). 設(shè)頂點為點P,與x軸的另一交點為點B.
(1)求b的值,求出點P、點B的坐標(biāo);
(2)如圖,在直線 上是否存在點D,使四邊形OPBD為平行四邊形?若存在,求出點D的坐
標(biāo);若不存在,請說明理由;
(3)在x軸下方的拋物線上是否存在點M,使△AMP≌△AMB?如果存在,試舉例驗證你的猜想;如果不存在,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com