(1997•重慶)下面四個命題:
(1)垂直于圓的切線的直線必過切點;
(2)順次連接對角線相等的四邊形各邊中點所得的四邊形是菱形;
(3)梯形被中位線分成的兩個小梯形相似;
(4)正多邊形既是軸對稱圖形,又是中心對稱圖形.
其中正確的命題有( 。
分析:根據(jù)有關(guān)性質(zhì)與定理,分別對命題是否正確做出判斷即可.
解答:解:(1)垂直于圓的切線的直線不一定過切點;故本選項錯誤;
(2)順次連接對角線相等的四邊形各邊中點所得的四邊形是菱形;故本選項正確;
(3)梯形被中位線分成的兩個小梯形不相似;故本選項錯誤;
(4)正多邊形是軸對稱圖形,不一定是中心對稱圖形,故本選項錯誤.
其中正確的命題有1個.
故選C.
點評:此題考查了命題與定理,關(guān)鍵是掌握有關(guān)性質(zhì)與定理,對命題是否正確做出判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1997•重慶)側(cè)面積與上、下底面積之和為144的圓柱,高和底面半徑的比是7:2,則圓柱的高為
14
π
π
14
π
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《一元二次方程》(03)(解析版) 題型:解答題

(2001•重慶)閱讀下面材料:
在計算3+5+7+9+11+13+15+17+19+21時,我們發(fā)現(xiàn),從第一個數(shù)開始,以后的每個數(shù)與它的前一個數(shù)的差都是一個相同的定值.具有這種規(guī)律的一列數(shù),除了直接相加外,我們還可以用公式計算它們的和.(公式中的n表示數(shù)的個數(shù),a表示第一個數(shù)的值,d表示這個相差的定值)
那么3+5+7+9+11+13+15+17+19+21=
用上面的知識解決下列問題:
為保護長江,減少水土流失,我市某縣決定對原有的坡荒地進行退耕還林.從1995年起在坡荒地上植樹造林,以后每年又以比上一年多植相同面積的樹木改造坡荒地,由于每年因自然災(zāi)害、樹木成活率、人為因素等的影響,都有相同數(shù)量的新坡荒地產(chǎn)生,下表為1995、1996、1997年的坡荒地面積和植樹的面積的統(tǒng)計數(shù)據(jù).假設(shè)坡荒地全部種上樹后,不再水上流失形成新的坡荒地,問到哪一年,可以將全縣所有的坡荒地全部種上樹木?
1995年1996年1997年
每年植樹的面積(畝)100014001800
植樹后坡荒地的實際面積(畝)252002400022400

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年重慶市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•重慶)閱讀下面材料:
在計算3+5+7+9+11+13+15+17+19+21時,我們發(fā)現(xiàn),從第一個數(shù)開始,以后的每個數(shù)與它的前一個數(shù)的差都是一個相同的定值.具有這種規(guī)律的一列數(shù),除了直接相加外,我們還可以用公式計算它們的和.(公式中的n表示數(shù)的個數(shù),a表示第一個數(shù)的值,d表示這個相差的定值)
那么3+5+7+9+11+13+15+17+19+21=
用上面的知識解決下列問題:
為保護長江,減少水土流失,我市某縣決定對原有的坡荒地進行退耕還林.從1995年起在坡荒地上植樹造林,以后每年又以比上一年多植相同面積的樹木改造坡荒地,由于每年因自然災(zāi)害、樹木成活率、人為因素等的影響,都有相同數(shù)量的新坡荒地產(chǎn)生,下表為1995、1996、1997年的坡荒地面積和植樹的面積的統(tǒng)計數(shù)據(jù).假設(shè)坡荒地全部種上樹后,不再水上流失形成新的坡荒地,問到哪一年,可以將全縣所有的坡荒地全部種上樹木?
1995年1996年1997年
每年植樹的面積(畝)100014001800
植樹后坡荒地的實際面積(畝)252002400022400

查看答案和解析>>

同步練習(xí)冊答案