下列判定三角形全等的定理中,能夠直接或間接證明兩個等腰直角三角形全等的有(  )
①SSS;②SAS;③AAS;④SSA;⑤ASA;⑥HL.
分析:分別根據(jù)全等三角形的判定方法由兩個等腰直角三角形的性質,分別假設已知條件證明即可.
解答:解:∵△ACB和△DEF是兩個等腰直角三角形,
∴∠A=∠D=90°,AC=AB,DE=DF,
當AC=DE,AB=DF,BC=EF,
AC=DE
AB=DF
BC=EF
,
∴△ACB≌△DEF(SSS);故選項①正確;
∵△ACB和△DEF是兩個等腰直角三角形,
∴當∠C=∠B=45°,∠E=∠F=45°,
∵AC=DE,AB=DF,
AC=DE
∠C=∠E=45
AB=DF
°

∴△ACB≌△DEF(SAS),故選項②正確;
∵△ACB和△DEF是兩個等腰直角三角形,
∴當∠C=∠B=45°,∠E=∠F=45°,
∵AC=DE,
∠C=∠E
∠B=∠F
AC=DE
,
∴△ACB≌△DEF(AAS),故選項③正確;

∵△ACB和△DEF是兩個等腰直角三角形,
∴當∠C=∠E=45°,AC=DE,AB=DF,
AC=DE
AB=DF
∠C=∠E=45°
,
∴△ACB≌△DEF(SSA),故選項④正確;
∵△ACB和△DEF是兩個等腰直角三角形,
∴當∠C=∠E=45°,∠A=∠D=90°,AC=DE,
∠A=∠D=90°
AC=DE
∠C=∠E

∴△ACB≌△DEF(ASA),故選項⑤正確;

∵△ACB和△DEF是兩個等腰直角三角形,
∴當∠A=∠D=90°,AC=DE,BC=EF,
在Rt△ACB和Rt△DEF中,
AC=DE
BC=EF

∴Rt△ACB≌Rt△DEF(HL),故選項⑥正確;
故①②③④⑤⑥都正確一共6個.
故選:D.
點評:此題主要考查了全等三角形的判定方法的應用,由兩個等腰直角三角形得出已知條件進而判定得出是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、下列命題:(1)有一邊相等的兩個等邊三角形全等(2)腰長相等且都有一個角是50°的兩個等腰三角形全等(3)各有兩邊長分別是5cm,4cm的兩個等腰三角形全等(4)判定三角形全等的條件中,至少要有一對邊對應相等.其中正確的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列不能判定三角形全等的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

下列判定三角形全等的定理中,能夠直接或間接證明兩個等腰直角三角形全等的有
①SSS;②SAS;③AAS;④SSA;⑤ASA;⑥HL.


  1. A.
    3個
  2. B.
    4個
  3. C.
    5個
  4. D.
    6個

查看答案和解析>>

科目:初中數(shù)學 來源:2012年浙江省杭州市中考數(shù)學模擬試卷(二)(解析版) 題型:選擇題

下列判定三角形全等的定理中,能夠直接或間接證明兩個等腰直角三角形全等的有( )
①SSS;②SAS;③AAS;④SSA;⑤ASA;⑥HL.
A.3個
B.4個
C.5個
D.6個

查看答案和解析>>

同步練習冊答案