精英家教網 > 初中數學 > 題目詳情

已知:如圖,點A、B、C、D在同一條直線上,AE=DF,AB=DC,EC=FB.
求證:∠ACE=∠DBF.

證明:∵AB=DC,
∴AB+BC=DC+CB,
即AC=DB,
在△EAC與△FDB中

∴△EAC≌△FDB (SSS)
∴∠ACE=∠DBF.
分析:求出AC=DB,根據SSS證△EAC≌△FDB,根據全等三角形的性質推出即可.
點評:本題考查了對全等三角形的性質和判定的應用,主要考查學生的推理能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、已知:如圖,點O為?ABCD的對角線BD的中點,直線EF經過點O,分別交BA、DC的延長線于點E、F,求證:AE=CF.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,點A、B分別在x軸、y軸上,以OA為直徑的⊙P交AB于點C(-
2
5
,
4
5
)
,E為直徑精英家教網OA上一動點(與點O、A不重合).EF⊥AB于點F,交y軸于點G.設點E的橫坐標為x,△BGF的面積為y.
(1)求直線AB的解析式;
(2)求y與x之間的函數關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,點A、B、C、D在同一條直線上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.BF,CE相交于點O.
(1)求證:∠ACE=∠DBF;
(2)若點B是AC的中點,∠E=60°,AE=4,求△OBC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,點P是半徑為5cm的⊙O外的一點,OP=13cm,PT切⊙O于T,過P點作⊙O的割線PAB,(PB>PA).設PA=x,PB=y,求y關于x的函數解析式,并確定自變量x的取值范圍.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•淮陰區(qū)模擬)已知:如圖,點E、A、C在同一條直線上,AB=CE,AC=CD,BC=ED.求證:AB∥CD.

查看答案和解析>>

同步練習冊答案