P為⊙O外一點(diǎn),PO交⊙O于B,PB=OB,PA為⊙O的切線,則∠P=


  1. A.
    30°
  2. B.
    45°
  3. C.
    36°
  4. D.
    60°
A
分析:首先連接OA,由PA為⊙O的切線,易得OA⊥AP,又由PB=OB,則可得OP=2OA,繼而求得答案.
解答:解:連接OA,
∵PA為⊙O的切線,
∴OA⊥PA,
∵OA=OB,PB=OB,
∴OP=2OA,
∴sin∠P==,
∴∠P=30°.
故選A.
點(diǎn)評(píng):此題考查了切線的性質(zhì)以及特殊角的三角函數(shù)值.此題難度不大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知P為⊙O外一點(diǎn),PO交⊙O于點(diǎn)A,割線PBC交⊙O于點(diǎn)B、C,且PB=BC,若OA=7,PA=4,則PB的長(zhǎng)等于( 。
A、6
2
B、
14
C、6
D、2
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

P為⊙O外一點(diǎn),PO交⊙O于B,PB=OB,PA為⊙O的切線,則∠P=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•潮安縣模擬)P為⊙O外一點(diǎn),PO及其延長(zhǎng)線分別交⊙O于C和Q,弦AB⊥OP于D,若∠DAC=∠CAP,
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)觀察發(fā)現(xiàn)

如圖1,⊙O的半徑為1,點(diǎn)P為⊙O外一點(diǎn),PO=2,在⊙O上找一點(diǎn)M,使得PM最長(zhǎng).
作法如下:作射線PO交⊙O于點(diǎn)M,則點(diǎn)M就是所求的點(diǎn),此時(shí)PM=
3
3

請(qǐng)說(shuō)明PM最長(zhǎng)的理由.
(2)實(shí)踐運(yùn)用
如圖2,在等邊三角形 ABC中,AB=2,以AB為斜邊作直角三角形AMB,使CM最長(zhǎng).
作法如下:以AB為直徑畫(huà)⊙O,作射線CO交⊙O右側(cè)于點(diǎn)M,則△AMB即為所求.請(qǐng)按上述方法用三角板和圓規(guī)畫(huà)出圖形,并求出CM的長(zhǎng)度.
(3)拓展延伸
如圖3,在周長(zhǎng)為m的任意形狀的△ABC中,分別以AB、AC為斜邊作直角三角形AMB,直角三角形ANC,使得線段MN最長(zhǎng),用尺規(guī)畫(huà)出圖形,此時(shí)MN=
0.5m
0.5m
.(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P為⊙O外一點(diǎn),PO及延長(zhǎng)線分別交⊙O于A、B,過(guò)點(diǎn)P作一直線交⊙O于M、N(異于A、B).求證:
(1)AB>MN;
(2)PB>PN;
(3)PA<PM.

查看答案和解析>>

同步練習(xí)冊(cè)答案