【題目】如圖,正方形ABCD的邊長為4,點P在DC邊上且DP=1,點Q是AC上一動點,則DQ+PQ的最小值為 .
【答案】5
【解析】解:如圖,連接BP,
∵點B和點D關(guān)于直線AC對稱,
∴QB=QD,
則BP就是DQ+PQ的最小值,
∵正方形ABCD的邊長是4,DP=1,
∴CP=3,
∴BP= =5,
∴DQ+PQ的最小值是5.
所以答案是:5.
【考點精析】利用正方形的性質(zhì)和軸對稱-最短路線問題對題目進(jìn)行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;已知起點結(jié)點,求最短路徑;與確定起點相反,已知終點結(jié)點,求最短路徑;已知起點和終點,求兩結(jié)點之間的最短路徑;求圖中所有最短路徑.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿AH折疊,使得頂點B落在CD邊上的P點處.折痕與邊BC交于點 H,
已知AD=8,HC:HB=3:5.
(1)求證:△HCP∽△PDA;
(2) 探究AB與HB之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)連結(jié)BP,動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連結(jié)MN交PB于點F,作ME⊥BP于點E.試問當(dāng)點M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;說明理由;若不變,求出線段EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅每分鐘踢毽子的次數(shù)正常范圍為少于80次,但不少于50次,用不等式表示為( )
A. 50<x<80; B. 50≤x≤80; C. 50≤x<80; D. 50<x≤80;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解,我們把依次連接任意一個四邊形各邊中點得到的四邊形叫中點四邊形,如圖1,在四邊形ABCD中,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點,依次連接各邊中點得到中點四邊形EFGH.
(1)這個中點四邊形EFGH的形狀是;
(2)如圖2,在四邊形ABCD中,點M在AB上且△AMD和△MCB為等邊三角形,E、F、G、H分別為AB、BC、CD、AD的中點,試判斷四邊形EFGH的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB和CD的公共部分BD= AB= CD,線段AB、CD的中點E,F(xiàn)之間距離是10cm,求AB,CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由兩個長為9,寬為3的全等矩形疊合而得到四邊形ABCD,則四邊形ABCD面積的最大值是( )
A.15
B.16
C.19
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】變形與求值
(1)通分: , .
(2)求值: ,其中x=1,y=﹣ .
(3)不改變分式的值,變形使分式 的分子與分母的最高次項的系數(shù)是正數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列 個命題:其中真命題是( ).
⑴三角形的外角和是 ;⑵三角形的三個內(nèi)角中至少有兩個銳角;⑶直角三角形兩銳角互余;⑷相等的角是對頂角.
A.( )( )
B.( )( )
C.( )( )
D.( )( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com