已知:關(guān)于x的一元二次方程mx2-(3m+2)x+2m+2=0(其中m>0).
(1)求證:方程必有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為x1、x2(x1<x2).若y是關(guān)于m的函數(shù),且y=x2-2x1,求這個(gè)函數(shù)的解析式;
(3)在(2)的條件下,當(dāng)自變量m滿足條件
 
時(shí),y≤2m.
分析:(1)要證明方程必有兩個(gè)不相等的實(shí)數(shù)根,即證明△>0,而△=b2-4ac=(3m+2)2-4×m×(2m+2)=(m+2)2,由m>0,則(m+2)2>0,得到△>0;
(2)由x=
-b±
b2-4ac
2a
,得x1=
(3m+2)+
(m+2)2
2m
,x2=
(3m+2)- 
(m+2)2
2m
;所以y=
(3m+2)+
(m+2)2
2m
-2×
(3m+2)-
(m+2)2
2m
=
2
m
.得到y(tǒng)=
2
m

(3)將y=
2
m
代入不等式y(tǒng)≤2m,得
2
m
≤2m,又m>0,解此不等式得m2≥1,又∵m>0,∴m>1.
解答:(1)證明:△=b2-4ac=(3m+2)2-4×m×(2m+2)=(m+2)2
∵m>0,
∴(m+2)2>0,
△>0,即方程必有兩個(gè)不相等的實(shí)數(shù)根;

(2)解:由x=
-b±
b2-4ac
2a
,得x2=
(3m+2)+
(m+2)2
2m
=
2m+2
m
;x1=
(3m+2)- 
(m+2)2
2m
=1;
∴y=x2-2x1=
2m+2
m
-2×1=
2
m
;

(3)解:將y=
2
m
代入不等式y(tǒng)≤2m,得
2
m
≤2m,又m>0,
解此不等式得m2≥1,
又∵m>0,
∴m≥1
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.本題也考查了不等式的解法,m>0是一個(gè)重要的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求證:方程①有兩個(gè)實(shí)數(shù)根;
(2)求證:方程①有一個(gè)實(shí)數(shù)根為1;
(3)設(shè)方程①的另一個(gè)根為x1,若m+n=2,m為正整數(shù)且方程①有兩個(gè)不相等的整數(shù)根時(shí),確定關(guān)于x的二次函數(shù)y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的條件下,把Rt△ABC放在坐標(biāo)系內(nèi),其中∠CAB=90°,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(4,0),BC=5,將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在拋物線上時(shí),求△ABC平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:關(guān)于x的一元二次方程ax2+bx+c=3的一個(gè)根為x=2,且二次函數(shù)y=ax2+bx+c的對(duì)稱軸是直線x=2,則拋物線的頂點(diǎn)坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程x2-2(m+1)x+m2=0有兩個(gè)整數(shù)根,m<5且m為整數(shù).
(1)求m的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=x2-2(m+1)x+m2的圖象沿x軸向左平移4個(gè)單位長(zhǎng)度,求平移后的二次函數(shù)圖象的解析式;
(3)當(dāng)直線y=x+b與(2)中的兩條拋物線有且只有三個(gè)交點(diǎn)時(shí),求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程x2-2x+c=0的一個(gè)實(shí)數(shù)根為3.
(1)求c的值;
(2)二次函數(shù)y=x2-2x+c,當(dāng)-2<x≤2時(shí),y的取值范圍;
(3)二次函數(shù)y=x2-2x+c與x軸交于點(diǎn)A、B(A左B右),頂點(diǎn)為點(diǎn)C,問:是否存在這樣的點(diǎn)P,以P為位似中心,將△ABC放大為原來的2倍后得到△DEF(即△EDF∽△ABC,相似比為2),使得點(diǎn)D、E恰好在二次函數(shù)上且DE∥AB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•延慶縣二模)已知:關(guān)于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實(shí)根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時(shí)方程的兩個(gè)根;
(3)在(2)的前提下,二次函數(shù)y=mx2-(2m+2)x+m-1與x軸有兩個(gè)交點(diǎn),連接這兩點(diǎn)間的線段,并以這條線段為直徑在x軸的上方作半圓P,設(shè)直線l的解析式為y=x+b,若直線l與半圓P只有兩個(gè)交點(diǎn)時(shí),求出b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案