精英家教網 > 初中數學 > 題目詳情

【題目】任意一條線段EF,其垂直平分線的尺規(guī)作圖痕跡如圖所示.若連接EH,HF,F(xiàn)G,GE,則下列結論中,不一定正確的是(  )
A.△EGH為等腰三角形
B.△EGF為等邊三角形
C.四邊形EGFH為菱形
D.△EHF為等腰三角形

【答案】B
【解析】解:A、正確.∵EG=EH, ∴△EGH是等邊三角形.
B、錯誤.∵EG=GF,
∴△EFG是等腰三角形,
若△EFG是等邊三角形,則EF=EG,顯然不可能.
C、正確.∵EG=EH=HF=FG,
∴四邊形EHFG是菱形.
D、正確.∵EH=FH,
∴△EFH是等邊三角形.
故選B.

根據等腰三角形的定義、菱形的定義、等邊三角形的定義一一判斷即可.本題考查線段的垂直平分線的性質、作圖﹣基本作圖、等腰三角形的定義等知識,解題的關鍵是靈活一一這些知識解決問題,屬于中考常考題型.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知直線y=﹣2x經過點P(﹣2,a),點P關于y軸的對稱點P′在反比例函數 (k≠0)的圖象上.
(1)求a的值;
(2)直接寫出點P′的坐標;
(3)求反比例函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以點C為圓心,CB為半徑的圓交AB于點D,則BD的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學習小組經過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°
(1)先作∠ACB的平分線交AB邊于點P,再以點P為圓心,PA長為半徑作⊙P;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)請你判斷(1)中BC與⊙P的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CD是⊙O的弦,AB是直徑,且CD∥AB,連接AC、AD、OD,其中AC=CD,過點B的切線交CD的延長線于E.
(1)求證:DA平分∠CDO;
(2)若AB=12,求圖中陰影部分的周長之和(參考數據:π=3.1, =1.4, =1.7)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣ ,y2)、點C( ,y3)在該函數圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2 . 其中正確的結論有(  )
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點,直線MN經過點C,過點A作直線MN的垂線,垂足為點D,且∠BAC=∠DAC.
(1)猜想直線MN與⊙O的位置關系,并說明理由;
(2)若CD=6,cos∠ACD= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知整數a1 , a2 , a3 , a4 , …滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此類推,則a2012的值為( )
A.﹣1005
B.﹣1006
C.﹣1007
D.﹣2012

查看答案和解析>>

同步練習冊答案