【題目】已知 AD 是△ABC 的一條高,∠BAD70°,∠CAD20°,則∠BAC 的度數(shù)為( )

A. 50° B. 60° C. 90° D. 50°或 90°

【答案】D

【解析】

此題要分情況考慮:當(dāng) AD 在三角形的內(nèi)部時(shí),∠BAC =∠BAD+∠CAD;當(dāng) AD 在三角形的外部時(shí),∠BAC=∠BAD﹣∠CAD

解:當(dāng) AD 在三角形的內(nèi)部時(shí),∠BAC=∠BAD+∠CAD=90°; 當(dāng) AD 在三角形的外部時(shí),∠BAC=∠BAD﹣∠CAD=50°.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王浩同學(xué)用木板制作一個(gè)帶有卡槽的三角形手機(jī)架,如圖所示.已知AC=20cm,BC=18cm,ACB=50°,王浩的手機(jī)長(zhǎng)為17cm,寬為8cm,王浩同學(xué)能否將手機(jī)放入卡槽AB內(nèi)?請(qǐng)說(shuō)明你的理由(提示:sin50°0.8,cos50°0.6,tan50°1.2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,某超市從一樓到二樓有一自動(dòng)扶梯,圖②是側(cè)面示意圖.已知自動(dòng)扶梯AB的坡度為12.4,AB的長(zhǎng)度是13米,MN是二樓樓頂,MNPQ,CMN上處在自動(dòng)扶梯頂端B點(diǎn)正上方的一點(diǎn),BCMN,在自動(dòng)扶梯底端A處測(cè)得C點(diǎn)的仰角為42°,則二樓的層高BC約為(精確到0.1米,sin42°≈0.67,tan42°≈0.90)(  )

A. 10.8 B. 8.9 C. 8.0 D. 5.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)質(zhì)地均勻的正四面體的四個(gè)面上依次標(biāo)有數(shù)字-2,0,1,2,連續(xù)拋擲兩次,朝下一面的數(shù)字分別是a,b,將其作為M點(diǎn)的橫、縱坐標(biāo),則點(diǎn)M(a,b)落在以A(-2,0),B(2,0),C(0,2)為頂點(diǎn)的三角形內(nèi)(包含邊界)的概率是( 。

A. B. C D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩校分別有一男一女共4名教師報(bào)名到農(nóng)村中學(xué)支教.

(1)若從甲、乙兩校報(bào)名的教師中分別隨機(jī)選1名,則所選的2名教師性別相同的概率是

(2)若從報(bào)名的4名教師中隨機(jī)選2名,用列表或畫(huà)樹(shù)狀圖的方法求出這2名教師來(lái)自同一所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1,A2在x軸上,點(diǎn)B1,B2在y軸上,其坐標(biāo)分別為A1(1,0),A2(2,0),B1(0,1),B2(0,2),分別以A1,A2,B1,B2其中的任意兩點(diǎn)與點(diǎn)O為頂點(diǎn)作三角形,所作三角形是等腰三角形的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果3m表示向北走3m,那么﹣2m與6m分別表示( )
A.向北走2m,向南走6m
B.向北走2m,向北走6m
C.向南走2m,向南走6m
D.向南走2m,向北走6m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一塊三角形紙板ABCACB=90°,AC=3,AB=5,把它置于平面直角坐標(biāo)系中,如圖所示.ACy軸,BCx軸,頂點(diǎn)AB恰好都在反比例函數(shù)y的圖象上,AC,BC的延長(zhǎng)線分別交x軸、y軸于D,E兩點(diǎn),設(shè)點(diǎn)C的坐標(biāo)為(m,n).

(1)AB兩點(diǎn)的坐標(biāo)(m,n,不含k);

(2)當(dāng)mn+0.5時(shí),求該反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ax=3,則(a2x=

查看答案和解析>>

同步練習(xí)冊(cè)答案