等邊三角形邊長為a,則該三角形的面積為( 。
A.
3
a2
B.
3
2
a2
C.
3
4
a2
D.
3
3
a2
作AD垂直BC,
∵等邊三角形邊長為a,
∴AB=AC=BC=a,
∴AD=
AC2-(
1
2
BC)
2
=
3
2
a,
∴S△ABC=
1
2
×a×
3
2
a
=
3
4
a2

故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABP與△CDP是兩個(gè)全等的等邊三角形,且PA⊥PD.有下列四個(gè)結(jié)論:
(1)∠PBC=15°;(2)ADBC;(3)直線PC與AB垂直;(4)四邊形ABCD是軸對(duì)稱圖形.
其中正確結(jié)論個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,點(diǎn)P從原點(diǎn)O出發(fā)按圖中“→”方向運(yùn)動(dòng),每次運(yùn)動(dòng)1個(gè)單位長度,得到點(diǎn)P1、P2、P3、P4、P5、P6、…,且△OP1P2、△P2P4P6、△P6P9P12…都是等邊三角形,則P1的坐標(biāo)是______,P420的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如下圖所示,在等邊△ABC和等邊△ADE中,點(diǎn)B、A、D在一條直線上,BE、CD交于F.
(1)求證:△BAE≌△CAD.
(2)求∠BFC的大。
(3)在圖1的基礎(chǔ)上,將△ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)180°,此時(shí)BE交CD的延長線于點(diǎn)F,其他條件不變,得到圖2所示的圖形,請(qǐng)直接寫出(1)、(2)中結(jié)論是否仍然成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,∠ACB=90°,CH⊥AB于H,△ACD和△BCE均為等邊三角形.
(1)求證:△DAH△ECH;
(2)若AH:HB=1:4,求S△DAH:S△ECH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正三角形與正六邊形的邊長分別為2和1,正六邊形的頂點(diǎn)O是正三角形的中心,則四邊形OABC的面積等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖CE是等邊三角形ABC邊AB邊上的高,AB=4,DA⊥AB,DA=
3
,BD與CE、CA分別交于點(diǎn)F、M.
(1)求CF的長;
(2)求△ABM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

以邊長為2厘米的正三角形的高為邊長作第二個(gè)正三角形,以第二個(gè)正三角形的高為邊長作第三個(gè)正三角形,以此類推,則第十個(gè)正三角形的邊長是( 。
A.2×(
2
2
10厘米
B.2×(
1
2
9厘米
C.2×(
3
2
10厘米
D.2×(
3
2
9厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀:D為△ABC中BC邊上一點(diǎn),連接AD,E為AD上一點(diǎn).
如圖1,當(dāng)D為BC邊的中點(diǎn)時(shí),有S△EBD=S△ECD,S△ABE=S△ACE;
當(dāng)
BD
DC
=m
時(shí),有
S△EBD
S△ECD
=
S△ABE
S△ACE
=m

解決問題:
在△ABC中,D為BC邊的中點(diǎn),P為AB邊上的任意一點(diǎn),CP交AD于點(diǎn)E、設(shè)△EDC的面積為S1,△APE的面積為S2
(1)如圖2,當(dāng)
BP
AP
=1
時(shí),
S1
S2
的值為______;
(2)如圖3,當(dāng)
BP
AP
=n
時(shí),
S1
S2
的值為______;
(3)若S△ABC=24,S2=2,則
BP
AP
的值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案