【題目】如圖,在△ABC中,∠A=60°,BE⊥AC,垂足為E,CF⊥AB,垂足為F,點D是BC的中點,BE,CF交于點M.
(1)如果AB=AC,求證:△DEF是等邊三角形;
(2)如果AB≠AC,試猜想△DEF是不是等邊三角形?如果△DEF是等邊三角形,請加以證明;如果△DEF不是等邊三角形,請說明理由.
【答案】(1)證明見解析(2)△DEF是等邊三角形.
【解析】試題分析:(1)先判定△ABC是等邊三角形,再根據(jù)等腰三角形三線合一的性質(zhì)可得EF=ED=DF,從而可得△DEF是等邊三角形;
(2)先根據(jù)直角三角形兩銳角互余的性質(zhì)求出∠ABE=∠ACF=30°,再根據(jù)三角形的內(nèi)角和定理求出∠BCF+∠CBE=60°,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠BDF+∠CDE=120°,從而得到∠EDF=60°,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得DE=DF,根據(jù)有一個角是60°的等腰三角形是等邊三角形即可證明.
試題解析:(1)證明:∵∠A=60°,AB=AC,∴△ABC是等邊三角形.∵BE⊥AC,垂足為E,CF⊥AB,垂足為F,∴E、F分別是AC、AB邊的中點.又∵點D是BC的中點,EF=BC,DE=AB,DF=AC,∴EF=ED=DF,∴△DEF是等邊三角形;
(2)解:△DEF是等邊三角形.理由如下:
∵∠A=60°,BE⊥AC,CF⊥AB,∴∠ABE=∠ACF=90°﹣60°=30°.在△ABC中,∠BCF+∠CBE=180°﹣60°﹣30°×2=60°.∵點D是BC的中點,BE⊥AC,CF⊥AB,∴DE=DF=BD=CD,∴∠BDF=2∠BCF,∠CDE=2∠CBE,∴∠BDF+∠CDE=2(∠BCF+∠CBE)=2×60°=120°,∴∠EDF=60°,∴△DEF是等邊三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖(1)是我們常見的“箭頭圖”,其中隱藏著哪些數(shù)學(xué)知識呢?下面請你解決以下問題:
(1)觀察如圖(1)“箭頭圖”,試探究∠BDC與∠A、∠B、∠C之間大小的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,回答下列兩個問題:
①如圖(2),把一塊三角板XYZ放置在△ABC上,使其兩條直角邊XY、XZ恰好經(jīng)過點B、C.若∠A=50°,則∠ABX+∠ACX= ;
②如圖(3),∠ABD,∠ACD的五等分線分別相交于點G1、G2、G3、G4,若∠BDC=135°,∠BG1C=67°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個鋼筋三角架三邊長分別是20厘米、50厘米、60厘米,現(xiàn)在再做一個與其相似的鋼筋三角架,而只有長為30厘米和50厘米的兩根鋼筋,要求以其中一根為一邊,從另一根上截下兩段(允許有余料)作為兩邊,則不同的截法有多少種?寫出你的設(shè)計方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺如圖①擺放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)點D為AB的中點,DE交AC于點P,DF經(jīng)過點C.
(1)求∠ADE的度數(shù);
(2)如圖②,將△DEF繞點D順時針方向旋轉(zhuǎn)角α(0°<α<60°),此時的等腰直角三角尺記為△DE′F′,DE′交AC于點M,DF′交BC于點N,試判斷的值是否隨著α的變化而變化?如果不變,請求出的值;反之,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A、B兩點。
(1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式
(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填寫下面證明過程中的推理依據(jù):
已知AD⊥BC,F(xiàn)G⊥BC,垂足分別為D、G,且∠1=∠2,求證∠BDE=∠C.
證明:∵AD⊥BC,F(xiàn)G⊥BC (已知),
∴∠ADC=∠FGC=90°____________.
∴AD∥FG______________________.
∴∠1=∠3___________________
又∵∠1=∠2,(已知),
∴∠3=∠2____________.
∴ED∥AC_____________.
∴∠BDE=∠C______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點P(1,4),Q(m,n)在函數(shù)y= (x>0)的圖象上,當m>1時,過點P分別作x軸、y軸的垂線,垂足為點A,B;過點Q分別作x軸、y軸的垂線,垂足為點C,D.QD交PA于點E,隨著m的增大,四邊形ACQE的面積( )
A. 減小 B. 增大 C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程由甲乙兩隊合做天完成,廠家需付甲乙兩隊共元;乙丙兩隊合做天完成,廠家需付乙丙兩隊共元;甲丙兩隊合做天完成全部工程的,廠家需付甲丙兩隊共元.
(1)求甲、乙、丙各隊單獨完成全部工程各需多少天?
(2)若要求不超過天完成全啊工程,問可由哪隊單獨完成此項工程花錢最少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com